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Agradezco a Jesús, mi salvador, por quien todo subsiste e intercede por mi ante Dios
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Composite Monotone Inclusions in Vector Subspaces:

Theory, Splitting, and Applications

Fernando Roldán Contreras

Abstract

In this thesis we aim at solving primal-dual coupled inclusions in real Hilbert spaces
involving the sum of different types of monotone operators. Our objective is to propose
globally convergent splitting algorithms for solving the coupled inclusions, which take
advantage of the intrinsic properties of each operator in the inclusion. We split this thesis
in two main parts.

In the first part, we propose a splitting method for solving primal-dual inclusions involv-
ing general maximally monotone operators and linear compositions. First, we provide a
generalization of the Douglas-Rachford splitting and the primal-dual algorithm, including
critical step-sizes. We also derive a new Split-ADMM by applying our method to the dual
of a convex optimization problem. Next, we derive an extension on Krasnosel’skĭı-Mann
(KM) iterations defined in the range of linear operators. We prove that the relaxed primal-
dual algorithm with critical step-sizes defines KM iterations in the range of a particular
linear operator and we derive its convergence. At the end of the first part, we provide the
resolvent computation of the parallel composition of a maximally monotone operator by
a linear operator under mild assumptions. This operation naturally appears when deal-
ing with linearly composed maximally monotone operators. Additionally, in the context
of convex optimization, we obtain the proximity operator of the infimal postcomposition
under mild qualification conditions.

In the second part, we propose splitting methods for solving inclusions involving the sum
of cocoercive, monotone-Lipschitzian, monotone continuous operators, and the normal
cone to a closed vector subspace of a real Hilbert space. First, we suppose that the
monotone continuous operator is zero and we provide a method generalizing the method
of partial inverses and the forward-backward-half forward splitting, among others. Finally,
we provide a splitting method for solving the case when the monotone continuous operator
is not zero but the vector subspace is the whole Hilbert space. We obtain a generalization of
the forward-back-half forward and Tseng’s splitting algorithms involving line search. Also,
we derive a method for solving non-linearly constrained composite convex optimization
problem.

Additionally, in each section we provide numerical simulations to compare our meth-
ods with best competitors in literature. We provide simulations in total variation image
restoration, sparse minimization, and constrained total variation least-square problems.



Chapter 1

Introduction

1.1 Problem and State-of-the-Art

In this thesis we aim at solving coupled inclusions in real Hilbert spaces involving differ-
ent operators including maximally monotone, linear compositions, cocoercive, monotone-
Lipschitzian, monotone-continuous, and normal cones to closed vector subspaces. Our
objective is to propose efficient algorithms taking advantage of the intrinsic properties of
each operator in the inclusion. More precisely, in this thesis we aim at solving instances
of the following general problem. The reader is referred to Section 1.3 for notation.

Problem 1.1.1. Let H and G be real Hilbert spaces, let A : H → 2H and B : G → 2G

be maximally monotone operators, let B2 : H → H be a monotone-Lipschitzian operator,
let B3 : H → H be a monotone-continuous operator, let L : H → G be a linear bounded
operator, and let V be a closed vector subspace of H. The problem is to

find (x, u) ∈ H × G such that

{
0 ∈ Ax+ L∗u+B2x+B3x+NV x

0 ∈ B−1u− Lx,
(1.1.1)

under the assumption that the solution set of (1.1.1) is nonempty.

We will explore applications of Problem 1.1.1 in next section. We split this thesis in
two main parts, in which we solve particular instances of Problem 1.1.1.

1.1.1 Case I: Primal-Dual Algorithms with Critical Step-Sizes
when B2 = B3 = 0 and V = H

In the first part of this thesis, we solve the following problem.

1



Composite Monotone Inclusions in vector subspaces

Problem 1.1.2. In the context of Problem 1.1.1 assume that B2 = B3 = 0 and V = H.
Then, Problem 1.1.1 reduces to

find (x, u) ∈ H × G such that

{
0 ∈ Ax+ L∗u

0 ∈ B−1u− Lx.
(1.1.2)

We denote by Z ̸= ∅ its set of solutions.

This inclusion arises naturally in several problems in partial differential equations com-
ing from mechanical models [39, 41, 43], differential inclusions [2, 58], game theory [16],
among other disciplines. It follows from [15, Proposition 2.8] that any solution (x̂, û) to
Problem 1.1.2 satisfies that x̂ is a solution to the primal inclusion

find x ∈ H such that 0 ∈ Ax+ L∗BLx (1.1.3)

and û is solution to the dual inclusion

find u ∈ G such that 0 ∈ B−1u− LA−1(−L∗u). (1.1.4)

Conversely, if x̂ is a solution to (1.1.3) then there exists ũ solution to (1.1.4) such that
(x̂, ũ) ∈ Z and the dual argument also holds. In the particular case when A = ∂f
and B = ∂g∗, for proper convex lower semicontinuous functions f : H → ]−∞,+∞] and
g : G → ]−∞,+∞], any solution x̂ to (1.1.3) is a solution to the primal convex optimization
problem

min
x∈H

(
f(x) + g(Lx)

)
, (1.1.5)

any solution û to (1.1.4) is a solution to the dual problem

min
u∈G

(
g∗(u) + f ∗(−L∗u)

)
, (1.1.6)

and the converse holds under standard qualification conditions (see, e.g., [15]). Problems
(1.1.5) and (1.1.6) model several image processing problems as image restoration and
denoising [20, 23, 30, 47, 50, 57], traffic theory [12, 38, 40], among others.

In the case when B = 0, Problem 1.1.2 reduces to find x ∈ zerA :=
{
x ∈ H

∣∣ 0 ∈ Ax
}

and the Proximal Point algorithm (PPA) [49, 55] generates a sequence (xn)n∈N converging
weakly to a point in zerA [55, Theorem 1]. Considering the operator JA = (Id + A)−1,
PPA is detailed below.

Algorithm 1.1.3 (Proximal Point Algorithm (PPA)). Let x0 ∈ H and τ > 0. Consider
the recurrence:

(∀n ∈ N)
⌊
xn+1 = JτAxn. (1.1.7)

2



Composite Monotone Inclusions in vector subspaces

In the case when B ̸= 0, for solving (1.1.3), PPA can be applied to A + L∗BL if it is
maximally monotone. The difficulty here arises from the computation of the resolvent
Jτ(A+L∗BL) which can be numerically expensive. For this reason, several methods solve
monotone inclusions by splitting the influence of each operator involved in Problem 1.1.2.
Some of this methods, which are known as splitting algorithms, are described below.

When L = Id, Problem 1.1.2 reduces to find x ∈ zer(A+B). In this case, this problem
can be solved by using the Douglas-Rachford splitting algorithm (DRS) [36, 46]. This
method was introduced first in [33] to solve some discretized partial differential equations
and it is detailed below.

Algorithm 1.1.4 (Douglas-Rachford Splitting (DRS)). Let x0 ∈ H and let τ > 0. Con-
sider the recurrence:

(∀n ∈ N)
⌊
zn = JτA(2JτBzn − zn) + zn − JτBzn. (1.1.8)

It is proved that (zn)n∈N converges weakly to a point z ∈ H such that JτAz ∈ zer(A+B)
[46]. In [36] was shown that the DRS correspond to the PPA applied to a particular
maximally monotone operator. Later, in [60], the weak convergence of the shadow sequence
(JτAzn)n∈N to an element in zer(A+B) is proved (see also [4] and [3, Section 26.3]).

In the case when L∗L = αId, since JL∗BL = Id − 1
α
L∗ ◦ (Id − JαB) ◦ L [3, Proposi-

tion 23.25], DRS applied to A and L∗BL is a splitting algorithm. However, for a general
operator L, JL∗BL is not explicit in general. The Monotone+Skew Algorithm (MSA) [15]
is a splitting algorithm proposed for solving Problem 1.1.2.

Algorithm 1.1.5 (Monotone+Skew Algorithm (MSA)). Let x0 ∈ H, let v0 ∈ G, and let
τ ∈ ]0, 1/∥L∥[. Consider the recurrence:

(∀n ∈ N)



y1,n = xn − τL∗vn
y2,n = vn + τLvn
p1,n = JτAy1,n
p2,n = JτB−1y2,n
q1,n = p1,n − τL∗p2,n
q2,n = p2,n + τLp1,n
xn+1 = xn − y1,n + q1,n
vn+1 = vn − y2,n + q2,n.

(1.1.9)

The sequences (xn)n∈N and (yn)n∈N converge weakly to a point in Z [15, Theorem 3.1].
A disadvantage of MSA is that the linear operators L and L∗ are computed twice by
iteration, which is numericallly costly in large scale problems.

In the optimization context on finite dimensional spaces (i.e. A = ∂f , B = ∂g, see
(1.1.5) and (1.1.6)), the Primal-Dual splitting (PDS) was proposed in [21]. Later on, in
[28] and [62], for optimization and monotone inclusion problems, respectively, the PDS

3
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was generalized to infinite dimensions spaces and including cocoercive operators in the
inclusion (or a functions with Lipschitzian gradient in the optimization context). The
primal-dual splitting in the context of Problem 1.1.2 is detailed below.

Algorithm 1.1.6 (Primal-Dual Splitting (PDS)). Let x0 ∈ H, let u0 ∈ G, let (σ, τ) ∈
]0,+∞[2 be such that στ∥L∥2 < 1, and let (λn)n∈N in ]0, 2[. Consider the recurrence:

(∀n ∈ N)

 pn+1 = JτA(xn − τL∗un)
qn+1 = JσB−1 (un + σL(2pn+1 − xn))
(xn+1, un+1) = (1− λn)(xn, un) + λn(pn+1, qn+1).

(1.1.10)

The sequence
(
(xn, un)

)
n∈N converges weakly to a point in Z [62, Theorem 3.1]. The

relaxation sequence (λn)n∈N can be used to accelerate the numerical convergence of PDS.
In [21], the DRS was deduced from PDS in the case when L = Id and στ = 1. However, the
convergence of DRS is not guaranteed in [21] because the convergence of PDS holds when
στ < 1. In [28] this result was also proved in the case when στ∥L∥ ≤ 1 for optimization
problems in finite dimensions. A variable metric version of the PDS (VMPDS) proposed
in [27] solves Problem 1.1.2 (see [52] for a similar method in the optimization context).
The method reads as follows.

Algorithm 1.1.7 (Variable Metric Primal-Dual Algorithm (VMPDS)). Let x0 ∈ H, let
u0 ∈ G, let Σ: G → G and Υ : H → H be self-adjoint linear strongly monotone operators
such that ∥

√
ΣL

√
Υ∥2 < 1, and let (λn)n∈N in ]0, 2[. Consider the recurrence:

(∀n ∈ N)

 pn+1 = JΥA(xn − ΥL∗un)
qn+1 = JΣB−1 (un + ΣL(2pn+1 − xn))
(xn+1, un+1) = (1− λn)(xn, un) + λn(pn+1, qn+1).

(1.1.11)

The sequences (xn)n∈N and (un)n∈N converge weakly to a point in Z, respectively [27,
Corollary 6.2]. This algorithm include self-adjoint linear strongly monotone operators Σ
and Υ , which can accelerate the convergence in numerical implementations. Note that, in
the case when Σ = σId and Υ = τ Id, the VMPDS reduces to the PDS. In this context,
given the connection between PDS and DRS reveled in [21] in the critical step-size case
στ∥L∥2 = 1, which is studied in [28, Theorem 3.3] for optimization problems in finite
dimensions, a detailed study of the limit case ∥

√
ΣL

√
Υ∥ = 1 for VMPDS in arbitrary

real Hilbert spaces is missing.
In the optimization context, the DRS was applied to the optimization dual problem

(1.1.6) to derive the Alternating Direction Method of Multipliers (ADMM) (considering
the operators A = ∂g∗ and B = ∂(f ∗ ◦ (−L∗))) [39]. ADMM can also be interpreted as
alternating minimization-maximization of the Augmented Lagrangian:

L : H× G × G → ]−∞,+∞]

(x, u, z) 7→ f(x) + g(u) + ⟨z | Lx− u⟩+ τ

2
∥Lx− u∥2, (1.1.12)

4
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where τ ∈ [0,+∞[. The ADMM algorithm iterates as follows.

Algorithm 1.1.8 (Alternating Direction Method of Multipliers (ADMM)). Let (u0, z0) ∈
G2 and τ > 0. Consider the recurrence:

(∀n ∈ N)

 xn+1 ∈ argminx∈H f(x) + τ
2
∥Lx− (un − zn/τ)∥2

un+1 = argminu∈G g(u) +
τ
2
∥Lxn+1 − (u− zn/τ)∥2

zn+1 = zn + τ(Lxn+1 − un+1).
(1.1.13)

Since the term Lx appears in the first minimization problem in (1.1.13), additional assump-
tions are needed to guarantee the existence of (xn)n∈N. For example, in finite dimensional
spaces, is it required L∗L to be invertible and that (ri dom g)∩ riL(dom f) ̸= ∅ (see [25]).
This issue is because, as we claim before, the ADMM algorithm can be deduced from the
DRS applying to the operator B = ∂(f ∗ ◦ (−L∗)), in which ∂f ∗ has not been split from
L∗. Similar methods which relax the hypothesis on L, and additionally include variable
metric, are proposed in [1, 11, 22, 37]. Others versions of ADMM can also solve problems
as in (1.1.14), which consider two linear operators A : H → K and B : G → K (see, e.g.,
[10]).

min
x∈H,y∈G
Ax+By=0

f(x) + g(y). (1.1.14)

In this context, a detailed study of weak conditions ensuring that ADMM algorithm is
well defined is not available in the literature, as far as we know.

1.1.2 Case II: Splitting Algorithms when L = Id and B Cocoer-
cive

The second part is dedicated to the numerical resolution of Problem 1.1.1 when L = Id
and B is β-cocoercive1 for some β ∈ ]0,+∞[. In particular, we aim at solving the following
inclusion.

Problem 1.1.9. In the context of Problem 1.1.1, assume that L = Id and B is β-cocoercive
for some β ∈ ]0,+∞[. Then, Problem 1.1.1 reduces to

find x ∈ H such that 0 ∈ Ax+Bx+B2x+B3x+NV x. (1.1.15)

Is worth to notice that if x ∈ H is a solution to Problem 1.1.9, then, there exists u ∈ H,
such that (x, u) is a solution to Problem 1.1.1 in this setting.

This inclusion encompasses several problems in partial differential equations coming
from mechanical models [39, 42, 43], differential inclusions [2, 58], game theory [16], among
other disciplines.

1Let β ∈ ]0,+∞[. B : H → H is β-cocoercive if for every (x, y) ∈ H2, ⟨x− y | Bx−By⟩ ≥ β∥Bx −
By∥2.
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In the case when B2 = B3 = 0 and V = H Problem 1.1.9 reduces to find x ∈ zer(A+B),
which is solved by the Forward-Backward Splitting (FBS) detailed below.

Algorithm 1.1.10 (Forward-Backward Splitting (FBS)). Let x0 ∈ H and let (τn)n∈N be
a sequence in [ε, 2β − ε] with ε ∈ ]0, β[. Consider the recurrence:

(∀n ∈ N)
⌊
xn+1 = JτnA(xn − τnBxn). (1.1.16)

The sequence (xn)n∈N generated by FBS converges weakly to some x ∈ zer(A+ B). This
method was proposed in [43] in a optimization context, where B = ∇f and A is the
normal cone to a convex set. This algorithm also was studied in [46, 51] in a monotone
inclusions context.

When B2 = B3 = 0 and V is properly contained in H, Problem 1.1.9 is reduced to
find x ∈ zer(A+B+NV ). In this setting, Problem 1.1.9 is solved by the Forward–Partial
Inverse–Splitting (FPS) proposed in [13], which is described below.

Algorithm 1.1.11 (Forward–Partial Inverse–Splitting (FPS)). Let γ ∈ ]0, 2β[, let ε ∈
]0, 1[, let (λn)n∈N be a sequence in [ε, 1], let x0 ∈ V , and let y0 ∈ V ⊥. Consider the
recurrence:

(∀n ∈ N)


sn = xn − γPVBxn + γyn
pn = JγAsn
yn+1 = yn + (λn/γ)(PV pn − pn)
xn+1 = xn + λn(PV pn − xn).

(1.1.17)

The sequence (xn)n∈N converges weakly to x ∈ V such that x ∈ zer(A + B + NV ) [13,
Corollary 5.5]. In the case when B = 0 and λn ≡ 1, the FPS method coincides with
the Spingarn’s partial inverse method with constant step-sizes [59]. Additionally, when
V = H the FPS method reduces to the FBS algorithm (Algorithm 1.1.10).

On the other hand, in the case B = B3 = 0, Problem 1.1.9 reduces to find x ∈
zer(A+B2+NV ). In this context, Problem 1.1.9 is solved by the Forward–Partial–Forward
Splitting (FPFS) method proposed in [14], which is described below.

Algorithm 1.1.12 (Forward–Partial–Forward Splitting (FPFS)). Let γ ∈ ]0, 1/L[, let
ε ∈ ]0, 1[, let (λn)n∈N be a sequence in [ε, 1], and let z0 ∈ H. Consider the recurrence:

(∀n ∈ N)


rn = zn − γPVB2PV zn
pn = JγArn
sn = 2PV pn − pn + rn − PV rn
tn = sn − γPVB2PV sn
zn+1 = zn + λn(tn − rn).

(1.1.18)

By setting, for every n ∈ N, xn = PV zn, we have that xn ⇀ x ∈ zer(A + B2 + NV ) [14,
Corollary 3.1]. Note that, when V = H, λn ≡ 1 the FPFS method reduces to the Tseng’s
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method [61]. On the other hand, when B2 = 0 and λn ≡ 1, the method coincides with the
Spingarn’s partial inverse method with constant step size [59].

In the case when V = H, Problem 1.1.9 reduces to find x ∈ zer(A+B+B2+B3). The
forward–backward–half forward splitting (FBHF), proposed in [17], solves this problem and
is detailed below.

Algorithm 1.1.13 (Forward–Backward–Half Forward (FBHF)). Let z0 ∈ domA ∪ X.
Consider the recurrence:

(∀n ∈ N)
⌊

xn = JγnA(zn − γn(B +B2 +B3)zn)
zn+1 = PX(xn + γn((B2 +B3)zn − (B2 +B3)xn)),

(1.1.19)

where X ⊂ H is nonempty, closed, and convex and (γn)n∈N is a sequence in ]0,+∞[
satisfying one of the following conditions.

1. Suppose that B3 = 0 and, for every n ∈ N, γn ∈ [η, χ − η], where η ∈ ]0, χ/2[ and
χ = 4β/(1 +

√
1 + 16β2L2).

2. Suppose that B2 = 0, that X ⊂ domA, let ε ∈]0, 1[, let δ ∈ ]0, 1[, let θ ∈
]
0,
√
1− ε

[
,

and, for every n ∈ N, let γn be the largest γ ∈ {2βεσ, 2βεσ2, . . .} satisfying

γ∥B3zn −B3JγA(zn − γ(B1 +B3)zn)∥ ≤ θ∥zn − JγA(zn − γ(B1 +B3)zn)∥. (1.1.20)

Additionally, suppose that at least one of the following conditions holds:

(i) lim inf
n→∞

γn = δ > 0.

(ii) B3 is uniformly continuous in any weakly compact subset of domA.

The sequence (zn)n∈N generated by the FBHF algorithm converges weakly to z ∈ X ∩
zer(A + B + B2 + B3) [17, Theorem 2.3]. Is worth to notice that when B3 = 0, B2 = 0,
and L → 0 the FBHF reduces to FBS (Algorithm 1.1.10). On the other hand, in the
case when B3 = 0, B1 = 0, and β → ∞ the Tseng’s splitting algorithm [61] is recovered
from FBHF. Additionally, when B = 0, B2 = 0, L → 0, and ε → 0, the Tseng’s splitting
algorithm with backtracking [61] is also recovered.

Methods proposed in [6, 27, 31, 32, 45, 53, 62] take advantage of the cocoercivity of
B, but they do not exploit the Lipschitzian property of B2, the continuity of B3, and
the normal cone NV , hence these methods need to compute the resolvents of B2, B3, and
NV . The schemes proposed in [5, 26, 34, 44] take advantage of the monotone-Lipschitzian
property of B2, but the cocoercivity of B, the continuity of B3, and the normal cone
NV are not leveraged. If we apply the above mentioned algorithms in [5, 26, 34, 44] to
Problem 1.1.9, we may consider B3 and NV as maximally monotone operators and B+B2
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as a monotone and Lipschitzian operator and activates it twice by iteration. On the
other hand, Algorithms in [19, 29, 48, 54, 56] can also consider B1 +B2 as monotone and
Lipschitzian activating it only once by iteration, but they need to store in the memory
the two past iterations and the step-size is reduced significantly. Furthermore, methods
in [19, 29, 48] consider only one maximally monotone operator, hence, the resolvent of
A + B3 + NV must be calculated; additionally, methods in [54, 56] need to calculate the
resolvent of B3 and NV . The method in [18] exploits the properties of B and B2 but not
considers the properties of B3 and NV which should be treated as a maximally monotone
operators. Other methods can solve Problem 1.1.9 by calculating the resolvents of B, B2,
B3, and NV [7, 8, 9, 15, 24, 35]. These calculation, in general, are not explicit or they can
be numerically expensive.

In this thesis we split Problem 1.1.9 in two sub-problems, tackling separately the cases
B3 = 0 and NV = H, respectively. In Chapters 5 and 6. In each of these chapters, we
propose a fully split method, which takes advantage of each of the intrinsic properties of
the operators, overcoming the drawbacks of the methods mentioned above.

1.2 Organization and Contributions

In this section we describe the main contributions of each part.

1.2.1 Case I

In the first part of this work we aim at solving numerically Problem 1.1.2. This part
consists in three chapters and each chapter contains an introduction and a main article
self contained. The main contributions of each chapter are:

Chapter 2

• We propose and study the Split-Douglas-Rachford (SDR) algorithm for solving Prob-
lem 1.1.2. This algorithm generalizes DRS (Algorithm 1.1.4) splitting the influence
of the linear operator from the monotone operators and include variable metrics.

• We show that VMPDS (Algorithm 1.1.7) can be deduced from SDR and it conver-
gence is extended to operators Σ: G → G and Υ : H → H such that ∥

√
ΣL

√
Υ∥2 ≤ 1

when λn ≡ 1.

• In the convex optimization context, we propose the Split-ADMM algorithm (SADMM)
which splits the influence of the linear operator in the first step of ADMM (Algo-
rithm 1.1.8) and includes non-standard metrics.

• We show that the SADMM method is equivalent to the SDR applied to the opti-
mization problem in equation (1.1.6).
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• We provide a numerical comparison of SDR with several methods available in the
literature in a total variation image reconstruction problem.

• We also illustrate the efficiency of SADMM by comparing its numerical performance
in an academical sparse minimization example.

Chapter 3

• We obtain the weak convergence of Krasnosel’skĭı-Mann iterations governed by firmly
quasinonexpansive and averaged operators in the space (ranV, ⟨· | V ·⟩).

• We generalize VMPDS (Algorithm 1.1.7) including critical preconditioners (i.e. lin-
ear operators Σ and Υ such that ∥

√
ΣL

√
Υ∥2 ≤ 1) and relaxation parameters. We

obtain the weak convergence of a shadow sequence of the VMPDS method in the
range of a linear suitable operator.

• We provide a detailed analysis of the case L = Id in Problem 1.1.2 and relations
of primal-dual algorithms with the relaxed Douglas-Rachford splitting (DRS). We
give a primal-dual version with preconditioners of DRS derived from VMPDS when
L = Id.

• We provide a numerical experiment on total variation image reconstruction. With
that experiment, we illustrate the advantages of using critical preconditioners and
relaxation steps.

Chapter 4

• We derive a formula for the resolvent of the parallel composition in a real Hilbert
space with non-standard metrics under mild assumptions.

• We also derive a formula for the proximity operator of the infimal postcomposition
in a real Hilbert space with non-standard metrics under mild assumptions.

• By using a generalization of the proximity operator, we derive a generalization of
Moreau’s decomposition for composite maximally monotone operators and subdif-
ferentials of composite convex functions.

9



Composite Monotone Inclusions in vector subspaces

1.2.2 Case II

In the second part, we aim at solving numerically Problem 1.1.9 in the cases B3 = 0
and NV = H, presented in chapters 5 and 6, respectively. Each chapter contains an
introduction and an article self contained. The main contributions of this part are:

Chapter 5

• We propose a splitting algorithm which fully exploits the structure and the oper-
ators’s properties in Problem 1.1.9 when B3 = 0. We generalize the Spingarn’s
splitting with constant step size [59], the FPFS Algorithm 1.1.12 [14], and the FPS
Algorithm 1.1.11 [13].

• By using product space techniques, we apply our algorithm to solve composite
primal-dual inclusion involving Lipschitzian-monotone operators, cocoercive oper-
ators, and a normal cone to a closed vector subspace.

• We derive an algorithm for solving convex composite optimization problems under
vector subspace constraints.

• We implement our method in a TV-regularized least-squares problem with con-
straints. We compare it performance with previous methods in the literature.

Chapter 6

• We derive a fully split method for solving Problem 1.1.9 when V = H, which takes
advantage of the intrinsic properties of the operators. In particular instances we
recover the FB method (Algorithm 1.1.10), the Tseng’s splitting [61], and the FBHF
method (Algorithm 1.1.13) proposed in [17].

• We derive an algorithm for solving optimization problems involving convex Gâteaux
differentiable functions, linear compositions, and Gâteaux differentiable nonlinear
convex constraints.

• We compare numerically our method with previous methods in literature. We test
it in a regularized least-squares problem with constraints, illustrating the efficiency
of our method.
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1.3 Notation

Throughout this thesis H and G are real Hilbert spaces with the scalar product ⟨· | ·⟩ and
associated norm ∥ · ∥. The identity operator on H is denoted by Id. The symbols ⇀
and → denote the weak and strong convergence, respectively. Let D ⊂ H be non-empty
and let T : D → H. The set of fixed points of T is FixT =

{
x ∈ D

∣∣ x = Tx
}
. Let

β ∈ ]0,+∞[. The operator T is β-cocoercive if

(∀x ∈ D)(∀y ∈ D) ⟨x− y | Tx− Ty⟩ ≥ β∥Tx− Ty∥2, (1.3.1)

it is β-Lipschitzian if

(∀x ∈ D)(∀y ∈ D) ∥Tx− Ty∥ ≤ β∥x− y∥, (1.3.2)

it is nonexpansive if it is 1-Lipschitzian, it is firmly nonexpansive if

(∀x ∈ D)(∀y ∈ D) ∥Tx− Ty∥2 ≤ ∥x− y∥2 − ∥(Id− T )x− (Id− T )y∥2, (1.3.3)

it is firmly quasinonexpansive if

(x ∈ D)(y ∈ FixT ) ∥Tx− y∥2 ≤ ∥x− y∥2 − ∥Tx− x∥2,

and it is β−strongly monotone if

(∀x ∈ D)(∀y ∈ D) ⟨x− y | Tx− Ty⟩ ≥ β∥x− y∥2.

Let A : H → 2H be a set-valued operator. The domain, range, graph, and zeros of
A are dom A =

{
x ∈ H

∣∣ Ax ̸= ∅
}
, ran A =

{
u ∈ H

∣∣ (∃x ∈ H) u ∈ Ax
}
, graA ={

(x, u) ∈ H ×H
∣∣ u ∈ Ax

}
, and zerA =

{
x ∈ H

∣∣ 0 ∈ Ax
}
, respectively. The inverse of A

is A−1 : u 7→
{
x ∈ H

∣∣ u ∈ Ax
}
. The operator A is monotone if, for every (x, u) and (y, v)

in graA, we have ⟨x− y | u− v⟩ ≥ 0 and A is maximally monotone if it is monotone and
its graph is maximal in the sense of inclusions among the graphs of monotone operators.
The resolvent of a maximally monotone operator A is JA = (Id + A)−1, which is firmly
nonexpansive and satisfies Fix JA = zerA. The partial inverse of A with respect to a closed
vector subspace V of H, denoted by AV , is defined by

(∀(x, y) ∈ H2) y ∈ AV x ⇔ (PV y + PV ⊥x) ∈ A(PV x+ PV ⊥y). (1.3.4)

Note that AH = A and A{0} = A−1. Given a linear bounded operator L : H → G, we
denote its adjoint by L∗ : G → H, its kernel by kerL, and its range by ranL, and if ranL
is closed, its Moore-Penrose inverse by

L† : G → H : y 7→ PCy0, (1.3.5)
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where Cy = {x ∈ H | L∗Lx = L∗y}. If L∗L is invertible, we have [3, Example 3.29]

L† = (L∗L)−1L∗. (1.3.6)

For every self-adjoint monotone linear operator U : H → H, we define ∥·∥U =
√

⟨· | ·⟩U ,
where ⟨· | ·⟩U : (x, y) → ⟨x | Uy⟩ is bilinear, positive semi-definite, symmetric. For every x
and y in H, we have

∥x− y∥2U = ∥x∥2U − 2⟨x | y⟩U + ∥y∥2U . (1.3.7)

We denote by Γ0(H) the class of proper lower semicontinuous convex functions f : H →
]−∞,+∞]. Let f ∈ Γ0(H). The Fenchel conjugate of f is defined by f ∗ : u 7→ supx∈H(⟨x | u⟩−
f(x)), f ∗ ∈ Γ0(H), the subdifferential of f is the maximally monotone operator ∂f : x 7→{
u ∈ H

∣∣ (∀y ∈ H) f(x) + ⟨y − x | u⟩ ≤ f(y)
}
, (∂f)−1 = ∂f ∗, and we have that zer ∂f is

the set of minimizers of f , which is denoted by argminx∈H f . Given a strongly monotone
self-adjoint linear operator Υ : H → H, we denote by

proxΥf : x 7→ argmin
y∈H

(
f(y) +

1

2
∥x− y∥2Υ

)
, (1.3.8)

and by proxf = proxIdf . We have proxΥf = JΥ−1∂f [3, Proposition 24.24(i)] and it is single
valued since the objective function in (1.3.8) is strongly convex. Moreover, it follows from
[3, Proposition 24.24] that

proxΥf = Id− Υ−1 proxΥ
−1

f∗ Υ = Υ−1 (Id− proxΥ
−1

f∗ )Υ. (1.3.9)

Given a non-empty set C ⊂ H, we denote by spanC the closed span of C, by cone C its
conical hull. Let C be a non-empty closed convex subset of H. We denote by sriC ={
x ∈ C

∣∣ cone (C − x) = span (C − x)
}

its strong relative interior, by ιC ∈ Γ0(H) the
indicator function of C, which takes the value 0 in C and +∞ otherwise, by PU

C = proxUιC
the projection onto C with respect to (H, ⟨· | ·⟩U), and we denote PC = P Id

C . For further
properties of monotone operators, nonexpansive mappings, and convex analysis, the reader
is referred to [3].
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[49] B. Martinet, Brève communication. régularisation d’inéquations variationnelles
par approximations successives, ESAIM: Mathematical Modelling and Numerical
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Primal-Dual Algorithms with
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Preface to Part I

In this first part we aim at solving the Problem 1.1.2 proposing a generalization of PDS
(Algorithm 1.1.6) including critical pre-conditioners and non-standard metrics.

In Chapter 2 we present the Split Douglas-Rachford algorithm (SDR) and we prove
its convergence to a solution to Problem 1.1.2. We also show the relation of SDR with
the PDS including critical pre-conditioners and non-standard metrics without relaxation
parameters. Additionally, by applying the SDR algorithm to a particular optimization
dual problem we derive the Split ADMM algorithm. We include numerical experiments.

In Chapter 3 we study the Primal-Dual Algorithm with critical pre-conditioners and
non-standard metrics in the range of a linear operator, including relaxation parameters.
We obtain a solution to Problem 1.1.2 through the convergence of a shadow sequence.
Additionally, we deduce the convergence of the Douglas-Rachford algorithm with non-
standard metrics. We provide some numerical simulations.

In Chapter 4 we obtain a formula for the resolvent of the parallel composition and
the proximity operator of the infimal postcomposition, under mild assumptions. These
operations arise, for example, in Chapter 2 when we derive Split ADMM.
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Chapter 2

Primal-Dual Algorithm with Critical
Step-Sizes

2.1 Introduction and Main Results

In this chapter we aim at solving the following problem.

Problem 2.1.1. Let H and G be real Hilbert spaces, let A : H → 2H and B : G → 2G be
maximally monotone operators, and let L : H → G be a non-zero linear bounded operator.
The problem is to find (x, u) ∈ Z, where

Z =
{
(x, u) ∈ H × G

∣∣ 0 ∈ Ax+ L∗u, 0 ∈ B−1u− Lx
}

(2.1.1)

is assumed to be non-empty.

This problem arises naturally in several problems in partial differential equations com-
ing from mechanical problems [35, 38, 39], differential inclusions [2, 53], game theory [13],
among other disciplines.

In order to solve Problem 2.1.1 we propose the following algorithm.

Algorithm 2.1.2 (Split-Douglas-Rachford (SDR)). In the context of Problem 2.1.1, let
(x0, u0) ∈ H × G, let Σ: G → G and Υ : H → H be strongly monotone self-adjoint linear
operators such that U = Υ−1 − L∗ΣL is monotone. Consider the recurrence:

(∀n ∈ N)


vn = Σ(Id− JΣ−1B)(Lxn + Σ−1un)
zn = xn − ΥL∗vn
xn+1 = JΥAzn
un+1 = ΣL(xn+1 − xn) + vn.

(2.1.2)

We obtain the following convergence result.
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Theorem 2.1.3. In the context of Problem 2.1.1, let (x0, u0) ∈ H × G and consider the
sequence

(
(xn, un)

)
n∈N defined by the Algorithm 2.1.2. Then, the following assertions hold:

1.
∑

n≥1 ∥xn+1 − xn∥2 < +∞ and
∑

n≥1 ∥un+1 − un∥2 < +∞.

2. There exists (x̂, û) ∈ Z such that (xn, un) ⇀ (x̂, û) in H⊕ G.

We show that VMPDS (Algorithm 1.1.7) can be deduced from SDR and its conver-
gence is extended to operators Σ: G → G and Υ : H → H such that ∥

√
ΣL

√
Υ∥2 ≤ 1.

In this chapter we also present the following proposition which shows the reduction of
Algorithm 2.1.2 to DRS (see Algorithm 1.1.4) in the case when ranL = G.

Proposition 2.1.4. In the context of Problem 2.1.1, assume ranL = G and set Σ =
(LΥL∗)−1. Then, Algorithm 2.1.2 with starting point (x0, u0) ∈ H × G reduces to the
recurrence

(∀n ∈ N) zn+1 = JΥL∗BL(2JΥAzn − zn) + zn − JΥAzn, (2.1.3)

where z0 = x0 − ΥL∗Σ(Id− JΣ−1B)(Lx0 + Σ−1u0).

Proposition 2.1.4 motivates us to derive an explicit computation of JτL∗BL and the
resolvent of the parallel composition studied in Chapter 4.

In the optimization context, we present the following problems in order to apply the
SDR algorithm to the dual problem on equation (D) to derive the Split-Alternating Di-
rection Method of Multipliers (SADMM).

Problem 2.1.5. Let H, G, and K be real Hilbert spaces. Let g ∈ Γ0(K), let f ∈ Γ0(H),
and let T : K → G and K : G → H be non-zero bounded linear operators such that
ranT ∗ ∩ dom g∗ ̸= ∅. Consider the following optimization problem

min
y∈K

(
g(y) + f(KTy)

)
(P )

together with the associated Fenchel-Rockafellar dual

min
x∈H

(
f ∗(x) + g∗(−T ∗K∗x)

)
. (D)

Moreover, consider the following Fenchel-Rockafellar dual problem associated to (D)

min
u∈G

(
(g∗ ◦ −T ∗)∗(u) + f(−Ku)

)
. (P ∗)

We denote by SP , SD, and SP ∗ the set of solutions to (P ), (D), and (P ∗), respectively.

The proposed SADMM iterates as follows.
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Algorithm 2.1.6 (Split-Alternating Direction Method of Multipliers (SADMM)). In the
context of Problem 2.2.10, let Σ: G → G and Υ : H → H be strongly monotone self-adjoint
linear operators such that Σ−1−K∗ΥK is monotone, let p0 ∈ K, and let (q0, x0) ∈ H×H.
Consider, the sequences defined by the recurrence

(∀n ∈ N)


yn = xn + Υ (KTpn − qn)

pn+1 ∈ argmin
p∈K

(
g(p) + 1

2
∥Tp− (Tpn − ΣK∗yn)∥2Σ−1

)
qn+1 = proxΥf (Υ

−1xn +KTpn+1)

xn+1 = xn + Υ (KTpn+1 − qn+1).

(2.1.4)

We obtain the following result which establishes the relation between SDR applied to
(D) and SADMM and the weak convergence of SADMM.

Theorem 2.1.7. In the context of Problem 2.1.5, suppose that there exists (x, u) ∈ H×G
such that {

0 ∈ ∂f ∗(x̂) +Kû

0 ∈ ∂(g∗ ◦ −T ∗)∗(û)−K∗x̂,

set
A = ∂f ∗, B = ∂(g∗ ◦ (−T ∗)), and L = K∗, (2.1.5)

and assume that 0 ∈ sri (dom g∗ − ranT ∗). Then, (pn)n∈N defined in (2.1.4) exists and the
following statements hold.

1. (SDR reduces to SADMM) Let (x̃n)n∈N, (ũn)n∈N, and (ṽn)n∈N be the sequences gen-
erated by Algorithm 2.1.2 and set

(∀n ∈ N)

{
p̃n+1 ∈ T−1(−ṽn)

q̃n+1 = Υ−1(x̃n − x̃n+1 − ΥKṽn).
(2.1.6)

Moreover, set p1 ∈ K such that Tp1 = T p̃1, and q1 = q̃1, x1 = x̃1. Then, sequences
(pn)n≥1, (qn)n≥1, and (xn)n≥1 generated by Algorithm 2.1.6 satisfy, for every n ≥ 1,
T p̃n = Tpn, q̃n = qn, and x̃n = xn.

2. (SADMM reduces to SDR) Let (pn)n≥1, (qn)n≥1, and (xn)n≥1 be sequences generated
by Algorithm 2.1.6 and define

(∀n ∈ N) un+1 = ΣK∗(xn+1 − xn)− Tpn+1. (2.1.7)

Moreover, set x̃0 = x1, ũ0 = u1, and let (x̃n)n∈N and (ũn)n∈N be the sequences
generated by Algorithm 2.1.2. Then, for all n ∈ N, x̃n = xn+1 and ũn = un+1.
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3. Let (pn)n∈N, (qn)n∈N, and (xn)n∈N be sequences generated by Algorithm 2.1.6. Then,
the following hold:

(a) There exists (ŷ, x̂, û) ∈ SP × SD × SP ∗ such that (xn,−Tpn, qn) ⇀ (x̂, û,−Kû)
and û = −T ŷ.

(b) Suppose that ranT ∗ = K. Then, there exists ŷ ∈ SP such that pn ⇀ ŷ.

We show that SADMM algorithm can be reduced to the ADMM algorithm (Algo-
rithm 1.1.8) including preconditioners. We also present a version of SADMM which allows
to deal with more general formulations involving two linear operators as in (1.1.14).

We finalize this chapter with numerical experiments. First, we present a compari-
son of SDR with several methods available in the literature in a total variation image
reconstruction problem. Later we illustrate the efficiency of SADMM in an academical
example.

2.2 Article: Split-Douglas–Rachford Algorithm for

Composite Monotone Inclusions and Split-ADMM1

Abstract In this paper we provide a generalization of the Douglas-Rachford splitting
(DRS) and the primal-dual algorithm [25, 56] for solving monotone inclusions in a real
Hilbert space involving a general linear operator. The proposed method allows for primal
and dual non-standard metrics and activates the linear operator separately from the mono-
tone operators appearing in the inclusion. In the simplest case when the linear operator
has full range, it reduces to classical DRS. Moreover, the weak convergence of primal-dual
sequences to a Kuhn-Tucker point is guaranteed, generalizing the main result in [54]. In-
spired by [35], we also derive a new Split-ADMM (SADMM) by applying our method to
the dual of a convex optimization problem involving a linear operator which can be ex-
pressed as the composition of two linear operators. The proposed SADMM activates one
linear operator implicitly and the other one explicitly, and we recover ADMM when the
latter is set as the identity. Connections and comparisons of our theoretical results with
respect to the literature are provided for the main algorithm and SADMM. The flexibility
and efficiency of both methods is illustrated via a numerical simulations in total variation
image restoration and a sparse minimization problem.

2.2.1 Introduction

In this paper we focus on a splitting algorithm for solving the following primal-dual mono-
tone inclusion.

1[16] Luis M. Briceño-Arias and Fernando Roldán. Split-Douglas–Rachford algorithm for composite
monotone inclusions and split-ADMM. SIAM J. Optim., 31(4), 2987-3013, 2021.
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Problem 2.2.1. Let H and G be real Hilbert spaces, let A : H → 2H and B : G → 2G be
maximally monotone operators, and let L : H → G be a non-zero linear bounded operator.
The problem is to find (x̂, û) ∈ Z, where

Z =
{
(x̂, û) ∈ H × G

∣∣ 0 ∈ Ax̂+ L∗û, 0 ∈ B−1û− Lx̂
}

(2.2.1)

is assumed to be non-empty.

This problem arises naturally in several problems in partial differential equations com-
ing from mechanical problems [35, 38, 39], differential inclusions [2, 53], game theory [13],
among other disciplines. The set Z is the collection of Kuhn-Tucker points [3, Prob-
lem 26.30], which is also known as extended solution set (see, e.g., [26] and [31, 54] for the
case when L = Id).

It follows from [12, Proposition 2.8] that any solution (x̂, û) to Problem 2.2.1 satisfies
that x̂ is a solution to the primal inclusion

find x ∈ H such that 0 ∈ Ax+ L∗BLx (2.2.2)

and û is solution to the dual inclusion

find u ∈ G such that 0 ∈ B−1u− LA−1(−L∗u). (2.2.3)

Conversely, if x̂ is a solution to (2.2.2) then there exists ũ solution to (2.2.3) such that
(x̂, ũ) ∈ Z and the dual argument also holds. In the particular case when A = ∂f
and B = ∂g∗, for proper convex lower semicontinuous functions f : H → ]−∞,+∞] and
g : G → ]−∞,+∞], any solution x̂ to (2.2.2) is a solution to the primal convex optimization
problem

min
x∈H

(
f(x) + g(Lx)

)
, (2.2.4)

any solution û to (2.2.3) is a solution to the dual problem

min
u∈G

(
g∗(u) + f ∗(−L∗u)

)
, (2.2.5)

and the converse holds under standard qualification conditions (see, e.g., [12]). Problems
(2.2.4) and (2.2.5) model several image processing problems as image restoration and
denoising [19, 22, 27, 43, 47, 51], traffic theory [11, 34, 37], among others.

In the case when L = Id, Problem 2.2.1 is solved by the Douglas-Rachford splitting
(DRS) [42], which is a classical algorithm inspired from a numerical method for solving
linear systems appearing in discretizations of PDEs [28]. Given z0 ∈ H and τ > 0, DRS
generates the sequence (zn)n∈N ⊂ H via the recurrence

(∀n ∈ N) zn+1 = JτB(2JτAzn − zn) + zn − JτAzn, (2.2.6)
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and zn ⇀ ẑ for some ẑ ∈ H such that JτAẑ is a zero of A+B [42, Theorem 1], where we
denote the resolvent of M : H → 2H by JM = (Id+M)−1. Under additional assumptions,
such as weak lower semicontinuity of JτA or maximal monotonicity of A + B, the weak
convergence of the shadow sequence (JτAzn)n∈N to a zero of A + B is guaranteed in [42,
Theorem 1]. More than thirty years later, the weak convergence of the shadow sequence
to a solution is proved in [54] without any further assumption.

In the general case when L ̸= Id, a drawback of DRS is that the maximal monotonicity
of L∗BL is needed in order to ensure the weak convergence of (zn)n∈N and the computa-
tion of its resolvent at each iteration usually leads to sub-iterations, at exception of very
particular cases. Several algorithms in the literature including [4, 5, 6, 12, 14, 56] split the
influence of the linear operator L from the monotone operators, avoiding sub-iterations. In
particular, we highlight the primal-dual splitting (PDS) proposed in [56], which generates
a sequence in H× G via the recurrence

(∀n ∈ N)
⌊

xn+1 = JτA(xn − τL∗vn)
vn+1 = JσB−1(vn + σL(2xn+1 − xn)),

(2.2.7)

for some initial point (x0, v0) ∈ H×G and strictly positive step-sizes satisfying τσ∥L∥2 < 1.
In the context of convex optimization, it is well known that DRS applied to (2.2.5)

leads to the alternating direction method of multipliers (ADMM) [35, 36, 38], whose
first step needs sub-iterations in general. This drawback is overcome by the splitting
methods proposed in [4, 5, 6, 14, 20, 41, 45]. In particular, the algorithm proposed in [20]
coincides with PDS in (2.2.7) in the optimization setting and its convergence is guaranteed
if τσ∥L∥2 < 1. In [25], the convergence of the sequences generated by (2.2.7) with step-
sizes satisfying the limit condition τσ∥L∥2 = 1 is studied in finite dimensions. This limit
case is important because the algorithm improves its efficiency as the parameters approach
the boundary (see Section 2.2.5.1), it has the advantage of tuning only one parameter, and
the algorithm reduces to DRS and ADMM when L = Id and τσ = 1 [20, Section 4.2].
Furthermore, a preconditioned version of (2.2.7) in the optimization context is proposed in
[48]. In this extension, τ Id and σId are generalized to strongly monotone self-adjoint linear
operators Υ and Σ, respectively, and the convergence is guaranteed under the condition
∥Σ 1

2LT
1
2∥ < 1. A preconditioned version of (2.2.7) for monotone inclusions is derived in

[24].
In this paper we propose and study the following splitting algorithm for solving Prob-

lem 2.2.1, which is a generalization of DRS when L ̸= Id and of [24, 56].

Algorithm 2.2.2 (Split-Douglas-Rachford (SDR)). In the context of Problem 2.2.1, let
(x0, u0) ∈ H × G, let Σ: G → G and Υ : H → H be strongly monotone self-adjoint linear
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operators such that U = Υ−1 − L∗ΣL is monotone. Consider the recurrence:

(∀n ∈ N)


vn = Σ(Id− JΣ−1B)(Lxn + Σ−1un)
zn = xn − ΥL∗vn
xn+1 = JΥAzn
un+1 = ΣL(xn+1 − xn) + vn.

(2.2.8)

Note that Algorithm 2.2.2 splits the influence of the linear operator from the monotone
operators and, by storing (Lxn)n∈N, only one activation of L is needed at each iteration.
Moreover, in the case when ranL = G, we prove in Proposition 2.2.8 that (2.2.8) reduces
to a preconditioned version of DRS in (2.2.6), in which case JΥL∗BL has a closed formula
depending on the resolvent of B. Other preconditioned versions of DRS are used for solving
structured convex optimization problems in [6, 8, 10, 58], but they do not reduce to DRS
when L = Id. Without any further assumptions than those in Problem 2.2.1, we guarantee
the weak convergence of the sequence

(
(xn, un)

)
n∈N generated by Algorithm 2.2.2 to a point

in Z, generalizing the result in [54] to the case when L ̸= Id. In the particular case when

∥Σ 1
2LT

1
2∥ < 1, we obtain a reduction of Algorithm 2.2.2 to the preconditioned PDS in

[48] and, when ∥Σ 1
2LT

1
2∥ = 1, we generalize [25, Theorem 3.3] to monotone inclusions

and infinite dimensions considering non-standard metrics. We also provide a numerical
comparison of Algorithm 2.2.2 with several methods available in the literature in a total
variation image reconstruction problem.

Another contribution of this manuscript is a generalization of ADMM in the convex
optimization context, by applying Algorithm 2.2.2 to the dual problem of (2.2.4) when
L = KT , for some non-trivial linear operators T and K. This splitting, called Split-
ADMM (SADMM), allows us to solve (2.2.4) by activating T implicitly and K explicitly.
SADMM reduces to the classical ADMM in the case when K = Id, Σ = σId, and Υ = τ Id
and, in the case when T = Id, it is a fully explicit algorithm which splits the influence
of the linear operator in the first step of ADMM. We prove the weak convergence of
SADMM, generalizing results in [29, 35, 36]. We also prove the equivalence between SDR
and SADMM, generalizing some results in [1, 29, 35, 36, 46] to the case when L ̸= Id.
In addition, we provide a version of SADMM able to deal with two linear operators as
in [9]. The resulting method is a non-standard metric version of several ADMM-type
algorithms in [4, 9, 52, 59] and it can be seen as an augmented Lagrangian method with
a non-standard metric. We also illustrate the efficiency of SADMM by comparing its
numerical performance in an academical sparse minimization example in which the matrix
L be factorized as L = KT from its singular value decomposition (SVD). We show that
the computational time may be drastically reduced by using SADMM with a suitable
factorization of L.

The paper is organized as follows. In Section 2.2.2 we set our notation. In Section 2.2.3
we provide the proof of convergence of SDR and we connect our results with the literature.
In Section 2.2.4 we derive the SADMM, we provide several theoretical results, and we
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compare them with the literature in convex optimization. Finally, in Section 2.2.5 we
provide numerical simulations illustrating the efficiency of SDR and SADMM.

2.2.2 Notations and Preliminaries

Throughout this paper H and G are real Hilbert spaces with the scalar product ⟨· | ·⟩
and associated norm ∥ · ∥. The identity operator on H is denoted by Id. Given a linear
bounded operator L : H → G, we denote its adjoint by L∗ : G → H, its kernel by kerL,
and its range by ranL. The symbols ⇀ and → denote the weak and strong convergence,
respectively. Let D ⊂ H be non-empty and let T : D → H. The set of fixed points of T
is FixT =

{
x ∈ D

∣∣ x = Tx
}
. Let β ∈ ]0,+∞[. The operator T is β−strongly monotone

if, for every x and y in D, we have ⟨x− y | Tx− Ty⟩ ≥ β∥x − y∥2, it is nonexpansive if,
for every x and y in D, we have ∥Tx− Ty∥ ≤ ∥x− y∥, it is firmly nonexpansive if

(∀x ∈ D)(∀y ∈ D) ∥Tx− Ty∥2 ≤ ∥x− y∥2 − ∥(Id− T )x− (Id− T )y∥2, (2.2.9)

and it is firmly quasinonexpansive if, for every x ∈ D and y ∈ FixT , we have ∥Tx −
y∥2 ≤ ∥x − y∥2 − ∥Tx − x∥2. Let A : H → 2H be a set-valued operator. The in-
verse of A is A−1 : u 7→

{
x ∈ H

∣∣ u ∈ Ax
}
. The domain, range, graph, and zeros of

A are dom A =
{
x ∈ H

∣∣ Ax ̸= ∅
}
, ran A =

{
u ∈ H

∣∣ (∃x ∈ H) u ∈ Ax
}
, graA ={

(x, u) ∈ H ×H
∣∣ u ∈ Ax

}
, and zerA =

{
x ∈ H

∣∣ 0 ∈ Ax
}
, respectively. The operator

A is monotone if, for every (x, u) and (y, v) in graA, we have ⟨x− y | u− v⟩ ≥ 0 and A
is maximally monotone if it is monotone and its graph is maximal in the sense of inclu-
sions among the graphs of monotone operators. The resolvent of a maximally monotone
operator A is JA = (Id + A)−1, which is firmly nonexpansive and satisfies Fix JA = zerA.

For every self-adjoint monotone linear operator U : H → H, we define ∥·∥U =
√

⟨· | ·⟩U ,
where ⟨· | ·⟩U : (x, y) → ⟨x | Uy⟩ is bilinear, positive semi-definite, symmetric. For every x
and y in H, we have

∥x− y∥2U = ∥x∥2U − 2⟨x | y⟩U + ∥y∥2U . (2.2.10)

We denote by Γ0(H) the class of proper lower semicontinuous convex functions f : H →
]−∞,+∞]. Let f ∈ Γ0(H). The Fenchel conjugate of f is defined by f ∗ : u 7→ supx∈H(⟨x | u⟩−
f(x)), f ∗ ∈ Γ0(H), the subdifferential of f is the maximally monotone operator ∂f : x 7→{
u ∈ H

∣∣ (∀y ∈ H) f(x) + ⟨y − x | u⟩ ≤ f(y)
}
, (∂f)−1 = ∂f ∗, and we have that zer ∂f is

the set of minimizers of f , which is denoted by argminx∈H f . Given a strongly monotone
self-adjoint linear operator Υ : H → H, we denote by

proxΥf : x 7→ argmin
y∈H

(
f(y) +

1

2
∥x− y∥2Υ

)
, (2.2.11)

and by proxf = proxIdf . We have proxΥf = JΥ−1∂f [3, Proposition 24.24(i)] and it is single
valued since the objective function in (2.2.11) is strongly convex. Moreover, it follows
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from [3, Proposition 24.24] that

proxΥf = Id− Υ−1 proxΥ
−1

f∗ Υ = Υ−1 (Id− proxΥ
−1

f∗ )Υ. (2.2.12)

Given a non-empty closed convex set C ⊂ H, we denote by PC the projection onto C, by
ιC ∈ Γ0(H) the indicator function of C, which takes the value 0 in C and +∞ otherwise,
we denote by NC = ∂ιC the normal cone to C, and by sriC its strong relative interior. For
further properties of monotone operators, nonexpansive mappings, and convex analysis,
the reader is referred to [3].

We finish this section with a result involving monotone linear operators, which is useful
for the connection of our algorithm and [48].

Proposition 2.2.3. Let H and G be real Hilbert spaces, let Υ : H → H and Σ: G → G be
strongly monotone self-adjoint linear operators, and set

V : H⊕ G → H⊕ G : (x, u) 7→ (Υ−1x− L∗u,Σ−1u− Lx). (2.2.13)

Then, the following statements are equivalent.

1. Υ−1 − L∗ ◦ Σ ◦ L is monotone.

2. ∥Σ 1
2 ◦ L ◦ Υ 1

2∥ ≤ 1.

3. ∥Υ 1
2 ◦ L∗ ◦ Σ 1

2∥ ≤ 1.

4. Σ−1 − L ◦ Υ ◦ L∗ is monotone.

5. For every (x, u) ∈ H × G,

⟨(x, u) | V (x, u)⟩ ≥ max
{
∥Υ−1u− L∗x∥2Υ , ∥Σ−1u− Lx∥2Σ

}
. (2.2.14)

Moreover, if any of the statements above holds, V is τσ
τ+σ

−cocoercive, where τ > 0 and
σ > 0 are the strong monotonicity constants of Υ and Σ, respectively.

Proof. 1⇔2: Since Σ and Υ are strongly monotone, linear, and self-adjoint, it follows from
[49, Theorem p. 265] that there exists strongly monotone, linear, self-adjoint operators Σ

1
2

and Υ
1
2 such that Σ = Σ

1
2 ◦ Σ

1
2 and Υ = Υ

1
2 ◦ Υ

1
2 . Moreover, Υ , Σ, Υ

1
2 , and Σ

1
2 are

invertible. Hence, we have

(∀x ∈ H)
〈
(Υ−1 − L∗ ◦ Σ ◦ L)x | x

〉
= ∥Υ− 1

2x∥2 − ∥Σ
1
2Lx∥2

= ∥Υ− 1
2x∥2

(
1− ∥Σ 1

2LΥ
1
2Υ− 1

2x∥2

∥Υ− 1
2x∥2

)
. (2.2.15)
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Therefore, since Υ− 1
2 is a bijection, by denoting y = Υ− 1

2x, 1 yields

∥Σ
1
2 ◦ L ◦ Υ

1
2∥ = sup

y∈H

∥Σ 1
2LΥ

1
2y∥

∥y∥
≤ 1. (2.2.16)

The converse clearly holds by using the norm inequality in the right hand side of (2.2.15).

2⇔3: Clear from (Σ
1
2 ◦ L ◦ Υ 1

2 )∗ = Υ
1
2 ◦ L∗ ◦ Σ 1

2 . 3⇔4: It follows from 1⇔2 replacing Σ
by Υ and L by L∗, respectively. 1⇔5: For every (x, u) ∈ H × G,

⟨(x, u) | V (x, u)⟩ =
〈
x | Υ−1x− L∗u

〉
+
〈
u | Σ−1u− Lx

〉
=
〈
x | (Υ−1 − L∗ΣL)x

〉
+ ⟨ΣLx− u | Lx⟩+

〈
u | Σ−1u− Lx

〉
=
〈
x | (Υ−1 − L∗ΣL)x

〉
+ ∥Σ−1u− Lx∥2Σ (2.2.17)

and, by symmetry, we analogously obtain

⟨(x, u) | V (x, u)⟩ =
〈
u | (Σ−1 − LΥL∗)u

〉
+ ∥Υ−1x− L∗u∥2Υ . (2.2.18)

Hence, it follows from 1 and (2.2.17) that ⟨(x, u) | V (x, u)⟩ ≥ ∥Σ−1u − Lx∥2Σ. Since 1 is
equivalent to 4, (2.2.18) yields ⟨(x, u) | V (x, u)⟩ ≥ ∥Υ−1x−L∗u∥2Υ and we obtain (2.2.14).
For the converse implication it is enough to combine (2.2.17) with (2.2.14).

For the last assertion, note that (2.2.14) implies, for every (x, u) ∈ H × G,{
⟨(x, u) | V (x, u)⟩ ≥ τ∥Υ−1x− L∗u∥2

⟨(x, u) | V (x, u)⟩ ≥ σ∥Σ−1u− Lx∥2.
(2.2.19)

By multiplying the first equation in (2.2.19) by λ ∈ [0, 1] and the second by (1 − λ) and
summing up we obtain

⟨(x, u) | V (x, u)⟩ ≥ λτ∥Υ−1x− L∗u∥2 + (1− λ)σ∥Σ−1u− Lx∥2

≥ min{λτ, (1− λ)σ}∥V (x, u)∥2. (2.2.20)

The result follows by noting that λ 7→ min{λτ, (1 − λ)σ} is maximized at λ∗ = σ/(τ +
σ).

2.2.3 Convergence of Algorithm 2.2.2

Denote by M : H⊕ G → 2H⊕G the maximally monotone operator [12, Proposition 2.7]

M : (x, u) 7→ (Ax+ L∗u)× (B−1u− Lx). (2.2.21)

For every strongly monotone self-adjoint linear operators Υ : H → H and Σ: G → G,
consider the real Hilbert space H obtained by endowing H × G with the inner product
⟨· | ·⟩U , where U : (x, u) 7→ (Υ−1x,Σ−1u). More precisely,

⟨· | ·⟩U :
(
(x, u), (y, v)

)
7→
〈
x | Υ−1y

〉
+
〈
u | Σ−1v

〉
, (2.2.22)
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and we denote the associated norm by ∥ · ∥U =
√

⟨· | ·⟩U . Observe that, since Υ and Σ
are strongly monotone, the topologies of H and H⊕ G are equivalent.

Proposition 2.2.4. In the context of Problem 2.2.1, let Σ: G → G and Υ : H → H be
strongly monotone self-adjoint linear operators such that U = Υ−1 − L∗ΣL is monotone,
and define T : H → H by

T :

(
x
u

)
7→
(
x+

u+

)
=

(
JΥA

(
x− ΥL∗Σ(Id− JΣ−1B)(Lx+ Σ−1u)

)
ΣL(x+ − x) + Σ(Id− JΣ−1B)(Lx+ Σ−1u)

)
. (2.2.23)

Then, the following hold:

1. For every (x, u) ∈ H, we have(
Υ−1(x− x+),Σ

−1(u− u+)
)
∈ M

(
x+, u+ − ΣL(x+ − x)

)
. (2.2.24)

2. FixT = Z = zerM .

3. For every (x̂, û) ∈ Z and (x, u) ∈ H we have

∥T (x, u)− (x̂, û)∥2U ≤ ∥(x, u)− (x̂, û)∥2U − ∥(x, u)− T (x, u)∥2U
+ 2⟨u+ − u | L(x+ − x)⟩. (2.2.25)

Proof. 1: From (2.2.23) and [3, Proposition 23.34(iii)] we obtain(
x+

u+

)
= T

(
x
u

)
⇔

{
x+ = JΥA

(
x− ΥL∗Σ(Id− JΣ−1B)(Lx+ Σ−1u)

)
u+ = ΣL(x+ − x) + Σ(Id− JΣ−1B)(Lx+ Σ−1u)

⇔

{
x+ = JΥA

(
x− ΥL∗(u+ − ΣL(x+ − x))

)
u+ − ΣL(x+ − x) = JΣB−1(ΣLx+ u)

⇔

{
Υ−1(x− x+)− L∗(u+ − ΣL(x+ − x)) ∈ Ax+

Σ−1(u− u+) + Lx+ ∈ B−1
(
u+ − ΣL(x+ − x)

)
,

(2.2.26)

and the result follows from (2.2.21). 2: It follows from 1 and (2.2.1) that T (x̂, û) = (x̂, û)⇔
(0, 0) ∈ M (x̂, û) ⇔ (x̂, û) ∈ Z. 3: Let (x̂, û) ∈ Z. It follows from 2 that (0, 0) ∈ M (x̂, û).
Hence, 1 and the monotonicity of M in H⊕ G yield

0 ≤
〈
Υ−1(x− x+) | x+ − x̂

〉
+
〈
Σ−1(u− u+) | u+ − û+ ΣL(x− x+)

〉
(2.2.22)
= ⟨(x, u)− (x+, u+) | (x+, u+)− (x̂, û)⟩U + ⟨u− u+ | L(x− x+)⟩

(2.2.10)
=

1

2

(
∥(x, u)− (x̂, û)∥2U − ∥(x, u)− (x+, u+)∥2U − ∥(x+, u+)− (x̂, û)∥2U

)
+ ⟨u− u+ | L(x− x+)⟩

and the result follows.
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Remark 2.2.5. 1. Note that (2.2.23) and Algorithm 2.2.2 yield, for every n ∈ N,
(xn+1, un+1) = (xn+, un+) = T (xn, un). This observation and the properties of T in
Proposition 2.2.4 are crucial for the convergence of Algorithm 2.2.2 in Theorem 2.2.6
below.

2. Proposition 2.2.4(3) can be written equivalently as, for every (x̂, û) ∈ Z and (x, u) ∈
H, ∥T (x, u)−(x̂, û)∥2U ≤ ∥(x, u)−(x̂, û)∥2U−∥(x, u)−T (x, u)∥2V , where V : (x, u) 7→
(Υ−1x−L∗u,Σ−1u−Lx). Since Υ−1−L∗ΣL is monotone, Proposition 2.2.3 asserts
that V is self-adjoint, linear, and cocoercive, but not strongly monotone and, thus,
∥ · ∥2V does not define a norm.

Theorem 2.2.6. In the context of Problem 2.2.1, let (x0, u0) ∈ H × G and consider the
sequence

(
(xn, un)

)
n∈N defined by the Algorithm 2.2.2. Then, the following assertions hold:

1.
∑

n≥1 ∥xn+1 − xn∥2 < +∞ and
∑

n≥1 ∥un+1 − un∥2 < +∞.

2. There exists (x̂, û) ∈ Z such that (xn, un) ⇀ (x̂, û) in H⊕ G.

Proof. Let x = (x, u) ∈ FixT , for every n ∈ N, denote by xn = (xn, un), and fix n ≥ 1. It
follows from Remark 2.2.5(1) that xn+1 = Txn and from Proposition 2.2.4(2) that x ∈ Z.
Therefore, Proposition 2.2.4(3) yields

∥xn+1 − x∥2U ≤ ∥xn − x∥2U − ∥xn − xn+1∥2U + 2⟨un+1 − un | L(xn+1 − xn)⟩. (2.2.27)

Hence, we deduce from the firm non-expansiveness of JΥA in (H, ⟨· | ·⟩Υ−1) [3, Proposi-
tion 23.34(i)] and the monotonicity of U = Υ−1 − L∗ΣL that

⟨un+1 − un | L(xn+1 − xn)⟩
(2.2.8)
= ⟨ΣL(xn+1 − xn) + vn − ΣL(xn − xn−1)− vn−1 | L(xn+1 − xn)⟩

= ⟨xn+1 − xn | L∗ΣL(xn+1 − xn)⟩+ ⟨L∗(vn − vn−1) | xn+1 − xn⟩
− ⟨ΣL(xn − xn−1) | L(xn+1 − xn)⟩

= ⟨xn+1 − xn | L∗ΣL(xn+1 − xn)⟩+
〈
Υ−1(xn − xn−1) | xn+1 − xn

〉
− ⟨(xn − ΥL∗vn − (xn−1 − ΥL∗vn−1)) | xn+1 − xn⟩Υ−1

− ⟨ΣL(xn − xn−1) | L(xn+1 − xn)⟩
≤ ⟨xn+1 − xn | L∗ΣL(xn+1 − xn)⟩+

〈
Υ−1(xn − xn−1) | xn+1 − xn

〉
− ∥xn+1 − xn∥2Υ−1 − ⟨L∗ΣL(xn − xn−1) | xn+1 − xn⟩

= −∥xn+1 − xn∥2U + ⟨xn − xn−1 | xn+1 − xn⟩U
(2.2.10)
= −1

2
∥xn+1 − xn∥2U +

1

2
∥xn − xn−1∥2U − 1

2
∥xn+1 + xn−1 − 2xn∥2U

≤ −1

2
∥xn+1 − xn∥2U +

1

2
∥xn − xn−1∥2U . (2.2.28)
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Therefore, it follows from (2.2.27) that

(∀n ≥ 1) ∥xn+1 − x∥2U + ∥xn+1 − xn∥2U ≤ ∥xn − x∥2U + ∥xn − xn−1∥2U
− ∥xn − xn+1∥2U . (2.2.29)

Thus, [23, Lemma 3.1] asserts that

(∀x ∈ Z)
(
∥xn − x∥2U + ∥xn − xn−1∥2U

)
n≥1

converges, (2.2.30)

that ∑
n≥1

∥xn+1 − xn∥2U < +∞, (2.2.31)

and 1 follows from (2.2.22) and the strong monotonicity of Υ−1 and Σ−1 [49, p.266].
In order to prove 2, note that, from 1 and the uniform continuity of U , we deduce

∥xn − xn−1∥2U → 0. Hence, (2.2.30) implies that, for every x ∈ Z, (∥xn − x∥2U )n∈N
converges. Now, let (x, u) ∈ H be a weak sequential cluster point of

(
(xn, un)

)
n∈N, say

(xkn , ukn) ⇀ (x, u) in H. It is clear from (2.2.22) that we have xkn ⇀ x in H and ukn ⇀ u
in G and from 1 that xkn+1 ⇀ x and ukn+1 ⇀ u. Hence, since Proposition 2.2.4(1) yields(

Υ−1(xkn − xkn+1),Σ
−1(ukn − ukn+1)

)
∈ M

(
xkn+1, ukn+1 − ΣL(xkn+1 − xkn)

)
, (2.2.32)

we deduce from 1, the uniform continuity of ΣL, Υ−1, and Σ−1, and [3, Proposition 20.38(ii)],
that (0, 0) ∈ M (x, u). Therefore, we conclude from [3, Lemma 2.47] that there exists
x̂ ∈ FixT such that xn ⇀ x̂ and the result follows from the equivalence of the topologies
of H and H⊕ G.

Remark 2.2.7. 1. In the proof of Theorem 2.2.6, we can also deduce that any weak
accumulation point of ((xn, un))n∈N is in Z by using the points in the graph of A and
B obtained from (2.2.26) and [3, Proposition 26.5(i)].

2. The method can include summable errors in the computation of resolvents and linear
operators, by using standard Quasi-Féjer sequences. We prefer to not include this
extension for simplicity of our algorithm formulation.

3. Consider the sequences (vn)n∈N, (zn)n∈N, (xn)n∈N, (un)n∈N defined by Algorithm 2.2.2
with starting point (x0, u0) ∈ H × G. It follows from (2.2.8) and [3, Proposi-
tion 23.34(iii)] that, for every n ∈ N,

vn+1 = Σ(Id− JΣ−1B)(Lxn+1 + Σ−1un+1)

= JΣB−1(ΣLxn+1 + un+1)

= JΣB−1(vn + ΣL(2xn+1 − xn)),

33



Chapter 2 Composite Monotone Inclusions in Vector Subspaces

leading to

(∀n ∈ N)
⌊

xn+1 = JΥA(xn − ΥL∗vn)
vn+1 = JΣB−1(vn + ΣL(2xn+1 − xn)),

(2.2.33)

with starting point (x0,Σ(Id − JΣ−1B)(Lx0 + Σ−1u0)) ∈ H × G. When ∥Σ 1
2 ◦ L ◦

Υ
1
2∥ < 1, (2.2.33) is equivalent to the proximal point algorithm applied to V −1M in

(H×G, ⟨· | ·⟩V ), where V : (x, u) 7→ (Υ−1x−L∗u,Σ−1u−Lx) is strongly monotone in
view of [48, Lemma 1]. Moreover, when Υ = τ Id, Σ = σId, and στ∥L∥2 < 1, (2.2.33)
coincides with the PDS in (2.2.7) [20, 25, 41, 56]. As stated in Remark 2.2.5, under
our assumptions V is no longer strongly monotone and the same approach cannot
be used. On the other hand, a generalization of the previous approach is provided
in [56] using the forward-backward splitting in order to allow cocoercive operators in
the monotone inclusion when V is strongly monotone. In the optimization context,
the inclusion of cocoercive operators allows for convex differentiable functions with
β−1−Lipschitzian gradients in the objective function and the convergence results are
guaranteed under the more restrictive assumption στ∥L∥2 < 1 − τ/2β [25, Theo-
rem 3.1]. Hence, the inclusion of cocoercive operators modifies our monotonicity
assumption on U in Algorithm 2.2.2 distancing us from our main results. This leads
us to consider this extension as part of further research.

4. We deduce from (2.2.33) and (2.2.8) that the primal iterates of SDR coincides with
those of PDS in (2.2.33) and SDR includes an additional inertial step in the dual
updates, more precisely,

(∀n ∈ N) un+1 = ΣL(xn+1 − xn) + vn. (2.2.34)

Hence, it follows from Theorem 2.2.6(1)&(2) and the uniform continuity of ΣL that
vn ⇀ û. As a consequence, we obtain the primal-dual weak convergence of (2.2.33)

when ∥Σ 1
2 ◦L◦Υ 1

2∥ ≤ 1, which generalizes [48, Theorem 1] and [25, Theorem 3.3], in
the case when Σ = σId and Υ = τ Id, to monotone inclusions and infinite dimensions.

5. By using product space techniques, Algorithm 2.2.2 allows us to solve

find x̂ ∈ H such that 0 ∈ Ax̂+
m∑
i=1

L∗
iBiLix̂, (2.2.35)

where, for every i ∈ {1, . . . ,m}, Gi is a real Hilbert space, A : H → 2H and Bi : Gi →
2Gi are maximally monotone, and Li : H → Gi is a linear bounded operator. In-
deed, by setting G = ⊕1≤i≤mGi, B : (ui)1≤i≤m 7→ ×m

i=1Biui, and L : x 7→ (Lix)1≤i≤m,
(2.2.35) is equivalent to (2.2.2). Hence, by setting Σ: (ui)1≤i≤m 7→ (Σiui)1≤i≤m,
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where (Σi)1≤i≤m are strongly monotone operators, previous remark allows us to write
Algorithm 2.2.2 as

(∀n ∈ N)


xn+1 = JΥA(xn − Υ

∑m
i=1 L

∗
i vi,n)

v1,n+1 = JΣ1B
−1
1
(v1,n + Σ1L1(2xn+1 − xn))

...
vm,n+1 = JΣmB−1

m
(vm,n + Σ1Lm(2xn+1 − xn)),

(2.2.36)

and the weak convergence of (xn)n∈N to a solution to (2.2.35) is guaranteed by The-
orem 2.2.6, assuming that

Υ−1 −
m∑
i=1

L∗
iΣiLi is monotone. (2.2.37)

Note that (2.2.36) has the same structure as the algorithm in [24, Corollary 6.2]
without considering cocoercive operators or relaxation steps, but the convergence is
guaranteed under the weaker assumption (2.2.37).

6. Suppose that ranL∗ = H and that Υ = (L∗ΣL)−1. Then, U = Υ−1 − L∗ΣL = 0
and the operator T defined in (2.2.23) is firmly quasinonexpansive in H, in view
of Proposition 2.2.4(3) and (2.2.29). We thus generalize [54, Corollary 3]. Observe
that, in the particular case when L = Id, we have Υ = Σ−1 and the operator T
defined in (2.2.23) reduces to T : (x, u) 7→ ΦΥ

A(JΥB(x+ Υu)− Υu), where

ΦΥ
A : H 7→ H×H : z 7→ (JΥAz, Υ

−1(JΥA − Id)z). (2.2.38)

In the case when Υ = τ Id, we recover the operator in [15, Proposition 5.18], which is
inspired by [54]. Moreover, note that the inner product ⟨· | ·⟩U defined in (2.2.22) co-
incides with that in [54] (up to a multiplicative constant). Altogether, Theorem 2.2.6
generalizes [54] for an arbitrary operator L and non-standard metrics. It also gen-
eralizes [35, Theorem 5.1] from variational inequalities to arbitrary monotone in-
clusions and it provides the weak convergence of shadow sequences (JτAzn)n∈N (not
guaranteed in [35]).

7. Note that, by storing (Lxn)n∈N, Algorithm 2.2.2 only needs to compute L once at
each iteration. This observation is important in high dimensional problems in which
the computation of L is numerically expensive.

The following result establishes the reduction of Algorithm 2.2.2 to Douglas-Rachford
splitting [30, 42] in the case when ranL = G.
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Proposition 2.2.8. In the context of Problem 2.2.1, assume ranL = G and set Σ =
(LΥL∗)−1. Then, Algorithm 2.2.2 with starting point (x0, u0) ∈ H × G reduces to the
recurrence

(∀n ∈ N) zn+1 = JΥL∗BL(2JΥAzn − zn) + zn − JΥAzn, (2.2.39)

where z0 = x0 − ΥL∗Σ(Id− JΣ−1B)(Lx0 + Σ−1u0).

Proof. Note that ranL = G yields, for every u ∈ G, ⟨LΥL∗u | u⟩ ≥ τ∥L∗u∥2 ≥ τα2∥u∥2,
where τ > 0 is the strong monotonicity parameter of Υ and the existence of α > 0 is
guaranteed by [3, Fact 2.26]. Moreover, it follows from [3, Proposition 23.34(iii)&(ii)]
that, for every n ∈ N,

vn+1
(2.2.8)
= Σ(Id− JΣ−1B)(Lxn+1 + Σ−1un+1)

= (Σ−1 +B−1)−1(Lxn+1 + Σ−1un+1)

(2.2.8)
= (Σ−1 +B−1)−1(L(2xn+1 − xn) + Σ−1vn)

= (LΥL∗ +B−1)−1L(2xn+1 − xn + ΥL∗vn), (2.2.40)

where the last equality follows from Σ−1 = LΥL∗. On the other hand, [3, Proposi-
tion 23.34(iii)] yields

JΥL∗BL = Υ
1
2J

Υ
1
2L∗BLΥ

1
2
Υ− 1

2

= Υ
1
2 (Id− Υ

1
2L∗(LΥL∗ +B−1)−1LΥ

1
2 )Υ− 1

2

= Id− ΥL∗(LΥL∗ +B−1)−1L, (2.2.41)

where the second equality follows from [3, Proposition 23.25(ii)] since (LΥ
1
2 )(LΥ

1
2 )∗ =

LΥL∗ is invertible. Hence, we have

zn+1
(2.2.8)
= xn+1 − ΥL∗vn+1

(2.2.40)
= xn+1 − ΥL∗(LΥL∗ +B−1)−1L(2xn+1 − xn + ΥL∗vn)

(2.2.8)
=

(
Id− ΥL∗(LΥL∗ +B−1)−1L

)
(2JΥA − Id)zn + (Id− JΥA)zn

(2.2.41)
= JΥL∗BL(2JΥA − Id)zn + (Id− JΥA)zn

and z0 is obtained from (2.2.8).

Remark 2.2.9. Note that Σ = (LΥL∗)−1 is equivalent to Σ−1 − LΥL∗ = 0 and, hence,
Υ−1 − L∗ΣL is monotone in view of Proposition 2.2.3. Therefore, Proposition 2.2.8 and
Theorem 2.2.6 provide the weak convergence of the non-standard metric version of DRS
in (2.2.39) when ranL = G. This also extends the convergence result in [54].
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2.2.4 Split ADMM

In this section we study the numerical approximation of the following convex optimization
problem.

Problem 2.2.10. Let H, G, and K be real Hilbert spaces. Let g ∈ Γ0(K), let f ∈ Γ0(H),
and let T : K → G and K : G → H be non-zero bounded linear operators such that
ranT ∗ ∩ dom g∗ ̸= ∅. Consider the following optimization problem

min
y∈K

(
g(y) + f(KTy)

)
(P )

together with the associated Fenchel-Rockafellar dual

min
x∈H

(
f ∗(x) + g∗(−T ∗K∗x)

)
. (D)

Moreover, consider the following Fenchel-Rockafellar dual problem associated to (D)

min
u∈G

(
(g∗ ◦ −T ∗)∗(u) + f(−Ku)

)
. (P ∗)

We denote by SP , SD, and SP ∗ the set of solutions to (P ), (D), and (P ∗), respectively.

In the particular case when K = Id, Problem 2.2.10 is also considered in [29, 35, 55, 57]
and ADMM is derived in [35] by applying DRS to the first order optimality conditions of
(D), with A = ∂f ∗ and B = ∂(g∗ ◦ (−T ∗K∗)). We generalize this procedure by applying
Algorithm 2.2.2 to (D) with A = ∂f ∗, B = ∂(g∗ ◦ (−T ∗)), and L = K∗. We thus obtain
the Split-ADMM (SADMM), which splits K from T . We now provide an example in which
this new formulation is relevant.

Example 2.2.11. Let A and M be n×N and m×N real matrices, respectively, let b ∈ Rn,
let ϕ ∈ Γ0(Rm), let h ∈ Γ0(Rn), and consider the optimization problem

min
y∈RN

h(Ay − b) + ϕ(My). (2.2.42)

This problem arises in image and signal restoration and denoising [19, 22, 27, 43, 47, 51].
If M is symmetric and positive definite, as in graph Laplacian regularization (see, e.g.,
[43, Section II.B] and [47, 51] for alternative regularizations), there exist P unitary and
D diagonal such that M = PDP⊤. Therefore, by setting η ∈ ]0, 1[, K = PDηP⊤,
T = PD1−ηP⊤, g = ϕ, and f = h(A · −b), (2.2.42) is a particular instance of (P ). In
some instances, the resolvent computation of ∂(g∗ ◦ −T ∗) is simpler to solve than that of
∂(g∗ ◦ −T ∗K∗) when η ∼ 1, since D1−η ∼ Id. The numerical advantage of this approach
is illustrated in an academical example in Section 2.2.5.2.

Other potential applications arise naturally when y = Φz, where z denotes frequencies
or wavelet coefficients of an image y and Φ is a frame or unitary linear operator allowing
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to pass from frequencies to images. Therefore, (2.2.42) is a particular case of (P ) when
f = h(· − b), g = ϕ ◦M ◦ Φ, K = A, and T = Φ. The properties of T in this case also
make preferable to split T from K.

First we provide some existence results and connections between problems (P ), (D),
and (P ∗).

Proposition 2.2.12. In the context of Problem 2.2.10, consider the inclusion

find (x̂, û) ∈ H × G such that

{
0 ∈ ∂f ∗(x̂) +Kû

0 ∈ ∂(g∗ ◦ −T ∗)∗(û)−K∗x̂.
(2.2.43)

1. Suppose that there exists ŷ ∈ SP and that one of the following assertions hold:

(a) 0 ∈ ∂g(ŷ) + T ∗K∗∂f(KTŷ).

(b) 0 ∈ sri (dom f −KTdom g).

Then, there exists x̂ ∈ SD such that (x̂,−T ŷ) is a solution to (2.2.43).

2. Suppose that there exists x̂ ∈ SD and that one of the following assertions hold:

(a) 0 ∈ ∂f ∗(x̂)−KT∂g∗(−T ∗K∗x̂).

(b) 0 ∈ sri (dom g∗ − T ∗K∗dom f ∗).

(c) 0 ∈ sri (dom (g∗ ◦ −T ∗)−K∗dom f ∗) and 0 ∈ sri (dom g∗ − ran T ∗).

Then, there exists ŷ ∈ SP such that (x̂,−T ŷ) is a solution to (2.2.43).

3. Suppose that there exists (x̂, û) solution to (2.2.43) and that 0 ∈ sri (dom g∗−ranT ∗).
Then, (x̂, û) ∈ SD × SP ∗ and there exists ŷ ∈ SP such that û = −T ŷ.

Proof. 1a: Let x̂ ∈ ∂f(KTŷ) be such that 0 ∈ ∂g(ŷ) + T ∗K∗x̂. Hence, it follows from [3,
Corollary 16.30] that {

0 ∈ ∂f ∗(x̂)−KTŷ

0 ∈ ∂g(ŷ) + T ∗K∗x̂,
(2.2.44)

and [12, Proposition 2.8(i)] implies (ŷ, x̂) ∈ SP × SD. By defining û = −T ŷ, we ob-
tain 0 ∈ ∂f ∗(x̂) + Kû. Moreover, ranT ∗ ∩ dom g∗ ̸= ∅ yields g∗ ◦ (−T ∗) ∈ Γ0(K) and
−T (∂g∗)(−T ∗) ⊂ ∂(g∗ ◦ −T ∗) in view of [3, Proposition 16.6(ii)]. Hence, we deduce from
[3, Corollary 16.30] and (2.2.44) that

−T ∗K∗x̂ ∈ ∂g(ŷ) ⇔ ŷ ∈ ∂g∗(−T ∗K∗x̂)

⇒ û = −T ŷ ∈ −T∂g∗(−T ∗K∗x̂)

⇒ û ∈ ∂(g∗ ◦ −T ∗)(K∗x̂) (2.2.45)

⇔ K∗x̂ ∈ ∂(g∗ ◦ −T ∗)∗(û)

⇔ 0 ∈ ∂(g∗ ◦ −T ∗)∗(û)−K∗x̂. (2.2.46)
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Therefore, (x̂,−T ŷ) is a solution to (2.2.43).
1b: By [3, Theorem 16.3 & Theorem 16.47(i)], 0 ∈ ∂(g + f ◦ KT )(ŷ) = ∂g(ŷ) +

T ∗K∗∂f(KTŷ). The result follows from 1a.
2a: Since, by taking ŷ ∈ ∂g∗(−T ∗K∗x̂) such that 0 ∈ ∂f ∗(x̂)−KTŷ, we obtain (2.2.44),

the argument is analogous to that in 1a.
2b: By [3, Theorem 16.3 & Theorem 16.47(i)], 0 ∈ ∂(f ∗+g∗◦(−T ∗K∗))(x̂) = ∂f ∗(x̂)−

KT (∂g∗)(−T ∗K∗x̂). The result hence follows from 2a.
2c: By [3, Theorem 16.3 & Theorem 16.47(i)], 0 ∈ ∂f ∗(x̂)+K∂(g∗◦−T ∗)(K∗x̂). More-

over 0 ∈ sri (dom g∗−ran T ∗) and [3, Theorem 16.47] imply 0 ∈ ∂f ∗(x̂)−KT (∂g∗)(−T ∗K∗x̂).
The result hence follows from 2a.

3: It follows from the second inclusion of (2.2.43) and [3, Theorem 16.47] that û ∈
∂(g∗ ◦ (−T ∗))(K∗x̂) = −T∂g∗(−T ∗K∗x̂). Hence, there exists ŷ ∈ ∂g∗(−T ∗K∗x̂) such
that û = −T ŷ, which yields 0 ∈ ∂g(ŷ) + T ∗K∗x̂. Therefore, by combining û = −T ŷ
with the first inclusion of (2.2.43), we deduce (2.2.44) and the result follows from [12,
Proposition 2.8(i)].

Remark 2.2.13. In the context of Proposition 2.2.12(3) we obtain the existence of ŷ ∈ SP

such that (x̂, ŷ) satisfies (2.2.44). If we additionally assume that ranT is closed, the second
equation in (2.2.44) implies that ŷ ∈ argminTy=−û g(y). We thus recover the results in
[57, Lemma 2], obtained when K = −Id.

Algorithm 2.2.14 (Split-Alternating Direction Method of Multipliers (SADMM)). In the
context of Problem 2.2.10, let Σ: G → G and Υ : H → H be strongly monotone self-adjoint
linear operators such that Σ−1−K∗ΥK is monotone, let p0 ∈ K, and let (q0, x0) ∈ H×H.
Consider, the sequences defined by the recurrence

(∀n ∈ N)


yn = xn + Υ (KTpn − qn)

pn+1 ∈ argmin
p∈K

(
g(p) + 1

2
∥Tp− (Tpn − ΣK∗yn)∥2Σ−1

)
qn+1 = proxΥf (Υ

−1xn +KTpn+1)

xn+1 = xn + Υ (KTpn+1 − qn+1).

(2.2.47)

Observe that the existence and uniqueness of solutions to the convex optimization
problem of the second step of (2.2.47) is not guaranteed without further hypotheses.
The following result provides sufficient conditions for the existence of solutions to the
optimization problem in (2.2.47), the equivalence between the sequences generated by
Algorithm 2.2.2 and Algorithm 2.2.14, and the weak convergence of SADMM.

Theorem 2.2.15. In the context of Problem 2.2.10, suppose that there exists a solution
to (2.2.43), set

A = ∂f ∗, B = ∂(g∗ ◦ (−T ∗)), and L = K∗, (2.2.48)
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and assume that 0 ∈ sri (dom g∗ − ranT ∗). Then, (pn)n∈N defined in (2.2.47) exists and
the following statements hold.

1. (SDR reduces to SADMM) Let (x̃n)n∈N, (ũn)n∈N, and (ṽn)n∈N be the sequences gen-
erated by Algorithm 2.2.2 and set

(∀n ∈ N)

{
p̃n+1 ∈ T−1(−ṽn)

q̃n+1 = Υ−1(x̃n − x̃n+1 − ΥKṽn).
(2.2.49)

Moreover, set p1 ∈ K such that Tp1 = T p̃1, and q1 = q̃1, x1 = x̃1. Then, sequences
(pn)n≥1, (qn)n≥1, and (xn)n≥1 generated by Algorithm 2.2.14 satisfy, for every n ≥ 1,
T p̃n = Tpn, q̃n = qn, and x̃n = xn.

2. (SADMM reduces to SDR) Let (pn)n≥1, (qn)n≥1, and (xn)n≥1 be sequences generated
by Algorithm 2.2.14 and define

(∀n ∈ N) un+1 = ΣK∗(xn+1 − xn)− Tpn+1. (2.2.50)

Moreover, set x̃0 = x1, ũ0 = u1, and let (x̃n)n∈N and (ũn)n∈N be the sequences
generated by Algorithm 2.2.2. Then, for all n ∈ N, x̃n = xn+1 and ũn = un+1.

3. Let (pn)n∈N, (qn)n∈N, and (xn)n∈N be sequences generated by Algorithm 2.2.14. Then,
the following hold:

(a) There exists (ŷ, x̂, û) ∈ SP × SD × SP ∗ such that (xn,−Tpn, qn) ⇀ (x̂, û,−Kû)
and û = −T ŷ.

(b) Suppose that ranT ∗ = K. Then, there exists ŷ ∈ SP such that pn ⇀ ŷ.

Proof. Note that g∗ ◦−T ∗ ∈ Γ0(G), that [3, Corollary 16.53] yields B = −T ◦ (∂g∗) ◦−T ∗,
and that JΣ−1B = (Id−Σ−1T (∂g∗)(−T ∗))−1. Therefore, it follows from [3, Corollary 16.30]
that

(∀(u, y) ∈ G2) y = JΣ−1Bu ⇔ (u− y) ∈ −Σ−1T∂g∗(−T ∗y)

⇔ (∃p ∈ K)

{
y = u+ Σ−1Tp

p ∈ ∂g∗(−T ∗y)

⇔ (∃p ∈ K)

{
y = u+ Σ−1Tp

0 ∈ ∂g(p) + T ∗y

⇔ (∃p ∈ K)

{
y = u+ Σ−1Tp

p ∈ S(u),
(2.2.51)
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where S : u 7→ argmin(g + 1
2
∥T · +Σu∥2Σ−1) and last equivalence follows from [3, The-

orem 16.3] and simple gradient computations. We conclude domS = G, proxΣg∗◦−T ∗ =
Id + Σ−1TS, and, therefore,

Σ(Id− JΣ−1B) = Σ
(
Id− proxΣg∗◦−T ∗

)
= −TS. (2.2.52)

Thus, the optimization problem in (2.2.47) is equivalent to

(∀n ∈ N) pn+1 ∈ S
(
K∗(xn + Υ (KTpn − qn))− Σ−1Tpn

)
(2.2.53)

and, hence, sequence (pn)n∈N exists.
1: It follows from (2.2.49), (2.2.8), (2.2.52), and (2.2.48) that, for every n ∈ N, T p̃n+1 =

−ṽn = TS(K∗x̃n +Σ−1ũn) and, thus, ũn+1 = ΣK∗Υ (KTp̃n+1 − q̃n+1)− T p̃n+1. Therefore,
we have

(∀n ≥ 1) T p̃n+1 = TS(K∗(x̃n + Υ (KTp̃n − q̃n))− Σ−1T p̃n). (2.2.54)

In addition, from (2.2.8), (2.2.48), and (2.2.12) we have, for every n ∈ N, x̃n+1 = x̃n +
ΥKT p̃n+1 − ΥproxΥf (Υ

−1x̃n + KTp̃n+1) and, thus, (2.2.49) yields q̃n+1 = proxΥf (Υ
−1x̃n +

KTp̃n+1). Altogether, we deduce

(∀n ≥ 1)

 T p̃n+1 = TS(K∗(x̃n + Υ (KTp̃n − q̃n))− Σ−1T p̃n)

q̃n+1 = proxΥf (Υ
−1x̃n +KTp̃n+1)

x̃n+1 = x̃n + Υ (KTp̃n+1 − q̃n+1)

(2.2.55)

and the result follows from (2.2.53), x1 = x̃1, q1 = q̃1, and Tp1 = T p̃1.
2: Define

(∀n ∈ N)

{
vn = −Tpn+1

zn = xn + ΥKTpn+1

(2.2.56)

and fix n ≥ 1. Hence, we have

qn+1
(2.2.47)
= proxΥf (Υ

−1xn +KTpn+1)

⇔ xn + Υ (KTpn+1 − qn+1)
(2.2.12)
= proxΥ

−1

f∗ (xn + ΥKTpn+1)

⇔ xn+1
(2.2.48)
= JΥAzn. (2.2.57)

Moreover, from (2.2.53), (2.2.50), and (2.2.47), we obtain pn+1 ∈ S(K∗xn+Σ−1un). Hence,
(2.2.52), (2.2.48), and (2.2.56) yield vn = Σ(Id− JΣ−1B)(Lxn + Σ−1un). Altogether, from
(2.2.50) we recover the recurrence in Algorithm 2.2.2 shifted by one iteration and, by
setting x̃0 = x1 and ũ0 = u1 the result follows.

3a. Set (un)n≥1 via (2.2.50) and define, for every n ∈ N, x̃n = xn+1 and ũn = un+1.
Then, 2 asserts that (x̃n)n∈N and (ũn)n∈N are the sequences generated by Algorithm 2.2.2
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with the operators defined in (2.2.48). Note that A = ∂g∗ and B = ∂(g∗ ◦ (−T ∗))
are maximally monotone [3, Theorem 20.25] and that the set Z defined in (2.2.1) is the
primal-dual solution set to the inclusion (2.2.43), which is non-empty by hypothesis. Then,
by Theorem 2.2.6(2), there exists some (x̂, û) solution to (2.2.43) such that (x̃n, ũn) =
(xn+1, un+1) ⇀ (x̂, û). Moreover, Theorem 2.2.6(1) yields

xn+1 − xn → 0, (2.2.58)

and, thus, (2.2.50) yields −Tpn+1 = un+1 − ΣK∗(xn+1 − xn) ⇀ û. Hence, since (2.2.47)
yields, for every n ∈ N, qn+1 = Υ−1(xn − xn+1) +KTpn+1, the weak continuity of K and
(2.2.58) imply qn ⇀ −Kû. We conclude that (xn,−Tpn, qn) ⇀ (x̂, û,−Kû). The result
follows from Proposition 2.2.12(3).

3b. By 3a, there exists ŷ ∈ SP such that Tpn ⇀ Tŷ. Thus, for every z ∈ K, there
exists w ∈ G such that z = T ∗w, which yields ⟨z | pn − ŷ⟩ = ⟨w | Tpn − T ŷ⟩ → 0 and,
hence, pn ⇀ ŷ. This concludes the proof.

Remark 2.2.16. 1. Note that the existence of a sequence (pn)n∈N is guaranteed without
any further assumption than 0 ∈ sri (dom g∗ − ranT ∗). This result is weaker than
strong monotonicity or full range assumptions made in [9, 35] and improves [32], in
which this existence is assumed. Note that, even if there could exist a continuum of
solutions to the optimization problem in (2.2.47), the image through T is unique, in
view of (2.2.53) and (2.2.52).

2. In the case when K = Id, Theorem 2.2.15(1) recovers the reduction of DRS when
A = ∂f ∗ and B = ∂(g∗ ◦ (−T ∗)) to ADMM and the convergence is guaranteed under
weaker conditions than the strong monotonicity and full range assumptions used in
[35, Section 5.1]. Under the assumption kerT = {0}, this result is obtained in [46,
Theorem 3.2].

3. Suppose that K = Id. Observe that, given the sequence (ṽn)n∈N generated by SDR,
Theorem 2.2.15(2) asserts that any sequence (pn)n∈N satisfying −Tpn+1 = ṽn allows
the convergence of ADMM and its equivalence with DRS applied to the dual problem
(D). The equivalence of ADMM with respect to DRS applied to the primal (P ) is
studied in [55, 57].

4. In the case when K = Id, Theorem 2.2.15(2) provides the reduction of ADMM
to DRS. Note that this reduction does not need any further assumption on T than
ranT ∗ ∩ dom g∗ ̸= ∅, which is weaker than kerT = {0}, used in [46, Theorem 3.2]
(see also [1, Appendix A] and [29, Proposition 3.43] in finite dimensions).

5. Theorem 2.2.15 provides the weak convergence of shadow sequences, improving [35,
Theorem 5.1] in the optimization setting. In addition, Theorem 2.2.15 recovers the
result in [29, Proposition 3.42] when K has full column rank in the finite dimensional
setting.
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The following result allows to deal with more general formulations involving two linear
operators.

Corollary 2.2.17. Let H, G, H, and K be real Hilbert spaces, let g ∈ Γ0(K), let h ∈ Γ0(H),
and let T : K → G, J : H → H, and K : G → H be non-zero bounded linear operators such
that 0 ∈ sri (dom g∗− ranT ∗), 0 ∈ sri (domh∗− ran J∗), and 0 ∈ sri (KTdom g+Jdomh).
Consider the convex optimization problem

min
y∈K

min
v∈H

g(y) + h(v)

s.t. KTy + Jv = 0, (2.2.59)

under the assumption that solutions exist. In addition, let Σ: G → G and Υ : H → H be
strongly monotone self-adjoint linear operators such that Σ−1 − K∗ΥK is monotone, let
p0 ∈ K, let v0 ∈ H, let x0 ∈ H, and consider the routine:

(∀n ∈ N)


yn = xn + Υ (KTpn + Jvn)

pn+1 ∈ argmin
p∈K

(
g(p) + 1

2
∥Tp− (Tpn − ΣK∗yn)∥2Σ−1

)
vn+1 ∈ argmin

v∈J

(
h(v) + 1

2
∥Jv +KTpn+1 + Υ−1xn∥2Υ

)
xn+1 = xn + Υ (KTpn+1 + Jvn+1).

(2.2.60)

Then, there exists (ŷ, v̂) solution to (2.2.59) such that the following hold:

1. Tpn ⇀ Tŷ and Jvn ⇀ Jv̂.

2. Suppose that ranT ∗ = K. Then, pn ⇀ ŷ.

3. Suppose that ran J∗ = H. Then, vn ⇀ v̂.

Proof. Note that, by setting f = (−J)▷h : q 7→ minJv=−q h(v), (2.2.59) can be equivalently
written as

min
y∈K

(
g(y) + min

−Jv=KTy
h(v)

)
≡ min

y∈K

(
g(y) + f(KTy)

)
. (2.2.61)

Since 0 ∈ sri (domh∗ − ran J∗), [3, Corollary 15.28] yields f = (h∗ ◦ −J∗)∗ ∈ Γ0(H).
Hence, the problem in (2.2.59) is a particular instance of Problem 2.2.10 and it follows
from (2.2.47), (2.2.12), and an argument analogous to that in (2.2.52) that

(∀n ∈ N) qn+1 = Υ−1 (Id− proxΥ
−1

h∗◦−J∗) (xn + ΥKTpn+1) = −Jvn+1, (2.2.62)

where vn+1 is defined in (2.2.60). Hence, (2.2.60) is a particular instance of Algorithm 2.2.14.
Moreover, [3, Proposition 12.36(i)] yields 0 ∈ sri (KTdom g + Jdomh) = sri (KTdom g −
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dom f) and Proposition 2.2.12(1b) implies the existence of a solution to (2.2.43). Alto-
gether, Theorem 2.2.15(3) asserts that there exists (ŷ, x̂) ∈ SP×SD such that (xn,−Tpn, qn) ⇀
(x̂,−T ŷ,KT ŷ) and û = −T ŷ ∈ SP ∗ . Moreover, since 0 ∈ sri (domh∗ − ran J∗), it follows
from (2.2.61) and [3, Corollary 15.28(i)] that there exists v̂ ∈ H such that (ŷ, v̂) is a solu-
tion to (2.2.59). In particular, Tpn ⇀ Tŷ and qn = −Jvn ⇀ KTŷ = −Jv̂, which yields
1. Assertions 2 and 3 follow analogously as in the proof of Theorem 2.2.15(3b).

Remark 2.2.18. 1. In the context of Corollary 2.2.17, let U = Υ−1 − KΣK∗ and
V = Σ−1 −K∗ΥK, which are monotone in view of Proposition 2.2.3. Then, Algo-
rithm 2.2.14 can be written equivalently as

pn+1 ∈ argmin
p∈K

(
g(p) + 1

2
∥KTp+ Jvn + Υ−1xn∥2Υ + 1

2
∥p− pn∥2T ∗V T

)
vn+1 ∈ argmin

v∈H

(
h(v) + 1

2
∥KTpn+1 + Jv + Υ−1xn∥2Υ

)
xn+1 = xn + Υ (KTpn+1 + Jvn+1),

(2.2.63)

which is a non-standard version of the preconditioned ADMM (PADMM) [9] without
proximal quadratic term in the second optimization problem of (2.2.63). It considers
the augmented Lagrangian with non-standard metric

LΥ : (p, v, x) 7→ g(p) + h(v) + ⟨x | KTp+ Jv⟩+ 1

2
∥KTp+ Jv∥2Υ , (2.2.64)

which generalizes the classical augmented Lagrangian LrId for some r > 0. Without
the strong monotonicity assumptions used in [9, Theorem 2.1 & Theorem 3.1], the
sequences of algorithm (2.2.60) are well defined and Corollary 2.2.17 provides weak
convergence. Moreover, in the case when J = −Id and Υ = rId, Corollary 2.2.17
ensures convergence under weaker assumptions than [52, Algorithm 2] (see also [4]
for a variant involving a differentiable convex function). In [59], a non-standard
metric is included only in the multiplier update step of [52, Algorithm 2], but the
convergence of the iterates is not obtained.

2. In the case when K = Id and Σ = Υ−1, the algorithm in (2.2.63) reduces to the
ADMM algorithm with the augmented Lagrangian with non-standard metric (2.2.64),
which, given (q0, x0) ∈ H ×H, iterates

(∀n ∈ N)


pn+1 ∈ argmin

p∈K

(
g(p) + 1

2
∥Tp + Jvn + Υ−1xn∥2Υ

)
vn+1 ∈ argmin

v∈H

(
h(v) + 1

2
∥Tpn+1 + Jv + Υ−1xn∥2Υ

)
xn+1 = xn + Υ (Tpn+1 + Jvn+1).

(2.2.65)

In the particular case when Υ = τ Id, it reduces to ADMM [7] and [32, 35, 36, 38]
when J = −Id.
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3. As in Remark 2.2.16(1), sequences (Tpn)n∈N and (Jvn)n∈N in (2.2.65) are unique
even if the solutions to the optimization problems in (2.2.65) are not unique. The
uniqueness of (pn)n∈N (resp. (vn)n∈N) is guaranteed, e.g., if g (resp. h) is strictly
convex or if ranT ∗ = K (resp. ran J∗ = H).

The following corollary is a direct consequence of Theorem 2.2.15 when T = Id.

Corollary 2.2.19. In the context of Problem 2.2.10, suppose that T = Id and that there
exists a solution to (2.2.43). Let Σ: G → G and Υ : H → H be strongly monotone self-
adjoint linear operators such that Σ−1 − K∗ΥK is monotone, let p0 ∈ K, let (q0, x0) ∈
H ×H, and consider the sequences (pn)n∈N and (xn)n∈N generated by the recurrence

(∀n ∈ N)


yn = xn + Υ (Kpn − qn)

pn+1 = proxΣ
−1

g

(
pn − ΣK∗yn

)
qn+1 = proxΥf (Υ

−1xn +Kpn+1)

xn+1 = xn + Υ (Kpn+1 − qn+1).

(2.2.66)

Then, there exists (ŷ, x̂) ∈ SP × SD such that (pn, xn) ⇀ (ŷ, x̂).

Remark 2.2.20. 1. Note that the explicit method proposed in Corollary 2.2.19 includes
two multiplier updates as the algorithm in [21, Algorithm I]. Our method allows for
different step-sizes in primal and dual updates and the main distinction is that the
third step in (2.2.66) includes the information of its second step, while the algorithm
in [21, Algorithm I] uses the information of previous iteration.

2. Note that (2.2.66) and (2.2.12) yield, for every n ∈ N,

xn+1 = xn + ΥKpn+1 − Υqn+1

= Υ (Id− proxΥf )(Υ
−1xn +Kpn+1)

= proxΥ
−1

f∗ (xn + ΥKpn+1) (2.2.67)

and yn+1 = xn+1 + Υ (Kpn+1 − qn+1) = 2xn+1 − xn. Therefore, when ∥Υ 1
2 ◦ K∗ ◦

Σ
1
2∥ < 1, (2.2.66) reduces to the algorithm proposed in [48] applied to the dual

problem min(f ∗ + g∗ ◦−K∗)(H). Hence, Corollary 2.2.19 is a generalization of [48,
Theorem 1] in this context.

3. Observe that the second step in (2.2.66) is explicit, differing from the first step in
ADMM (2.2.65), which is implicit. This feature allows for an algorithm with very
low computational cost by iteration. However, the number of iterations may be much
larger than those of ADMM in some instances, as we verify numerically in Sec-
tion 2.2.5.2.
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2.2.5 Numerical experiments

In this section we provide two numerical experiments. In the first experiment we compare
SDR with several schemes in the literature for solving the total variation image restoration
problem. In the second experiment we consider an academic example in which splitting
K from T has numerical advantages with respect to ADMM.

2.2.5.1 Total variation image restoration

A classical model in image processing is the total variation image restoration [50], which
aims at recovering an image from a blurred and noisy observation under piecewise constant
assumption on the solution. The model is formulated via the optimization problem

min
x∈[0,255]N

1

2
∥Rx− b∥22 + α∥∇x∥1 =: F TV (x), (2.2.68)

where x ∈ [0, 255]N is the image of N = N1 × N2 pixels to recover from a blurred and
noisy observation b ∈ Rm, R : RN → Rm is a linear operator representing a Gaussian
blur, the discrete gradient ∇ : x 7→ ∇x = (D1x,D2x) includes horizontal and vertical
differences through linear operators D1 and D2, respectively, its adjoint ∇∗ is the discrete
divergence (see, e.g., [18]), and α ∈ ]0,+∞[. A difficulty in this model is the presence
of the non-smooth ℓ1 norm composed with the discrete gradient operator ∇, which is
non-differentiable and its proximity operator has not a closed form.

Note that, by setting f = ∥R · −b∥2/2, g1 = α∥ · ∥1, and g2 = ι[0,255]N , L1 = ∇, and
L2 = Id, (2.2.68) can be reformulated as min(f + g1 ◦ L1 + g2 ◦ L2) or equivalently as
(qualification condition holds)

find x̂ ∈ RN such that 0 ∈ ∂f(x̂) + L∗
1∂g1(L1x) + L∗

2∂g2(L2x̂), (2.2.69)

which is a particular instance of (2.2.35), in view of [3, Theorem 20.25]. Moreover, for
every τ > 0, Jτ∂f = (Id + τR∗R)−1(Id − τR∗b), for every i ∈ {1, 2}, Jτ(∂gi)−1 = τ(Id −
proxgi/τ )(Id/τ), proxg2/τ = P[0,255]N , and proxg1/τ = proxα∥·∥1/τ is the component-wise soft
thresholder, computed in [3, Example 24.34]. Note that (Id + τR∗R)−1 can be computed
efficiently via a diagonalization of R using the fast Fourier transform F [40, Section 4.3].
Altogether, Remark 2.2.7(5) allows us to write Algorithm 2.2.2 as Algorithm 1 below,
where we set Υ = τ Id, Σ1 = σ1Id, and Σ2 = σ2Id, for τ > 0, σ1 > 0, and σ2 > 0. We
denote by R the primal-dual error

R : (x+, u+, x, u) 7→

√
∥(x+, u+)− (x, u)∥2

∥(x, u)∥2
(2.2.70)

and by ε > 0 the convergence tolerance. The error R is inspired from (2.2.31) in the proof
of Theorem 2.2.6.
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Algorithm 1

1: Fix x0 ∈ RN , v1,0 ∈ Rm, v2,0 ∈ R2N , τσ1∥∇∥2 + τσ2 ≤ 1, and r0 > ε > 0.
2: while rn > ε do
3: xn+1 = (Id + τR∗R)−1(xn − τ∇∗v1,n − τv2,n − τR∗b)
4: v1,n+1 = σ1(Id− proxα∥·∥1/σ1

)(v1,n/σ1 +∇(2xn+1 − xn))

5: v2,n+1 = σ2

(
Id− P[0,255]N

)
(v2,n/σ2 + 2xn+1 − xn)

6: rn = R
(
(xn+1, v1,n+1, v2,n+1), (xn, v1,n, v2,n)

)
7: end while
8: return (xn+1, v1,n+1, v2,n+1)

In this case, (2.2.37) reduces to the monotonicity of (τ−1 − σ2)Id − σ1∇∗∇, which is
equivalent to

τσ1∥∇∥2 + τσ2 ≤ 1, (2.2.71)

in view of Proposition 2.2.3. By using the power iteration [44] with tolerance 10−9, we
obtain ∥∇∥2 ≈ 7.9997. This is consistent with [17, Theorem 3.1].

Observe that, when σ1 = σ2 = σ, Algorithm 1 reduces to the algorithm proposed in
[20] (when στ(∥∇∥2 + 1) < 1) or [25, Theorem 3.3], where the case στ(∥∇∥2 + 1) = 1 is
included.

We provide two main numerical experiments in this subsection: we first compare the
efficiency of Algorithm 1 when the step-sizes achieve the boundary in (2.2.71), verify-
ing that the efficiency is better when the equality is achieved. Next, we compare the
performance of different methods in the literature with optimal step-sizes. For these com-
parisons, we consider the test image of 256× 256 pixels (N1 = N2 = 256) in Figure 2.4a2

(denoted by x). The operator blur R is set as a Gaussian blur of size 9× 9 and standard
deviation 4 (applied by MATLAB function fspecial) and the observation b is obtained
by b = Rx + e ∈ Rm1×m2 , where m1 = m2 = 256 and e is an additive zero-mean white
Gaussian noise with standard deviation 10−3 (using imnoise function in MATLAB). We
generate 20 random realization of random variable e leading to 20 observations (bi)1≤i≤20.

In Table 2.1 we study the efficiency of Algorithm 1, in the simpler case when σ1 =
σ2 = σ, as parameters σ and τ approach the boundary στ(∥∇∥2 + 1) = 1. In particular,
we set σ = τ = κ/(10

√
1 + ∥∇∥2) for κ ∈ {6, 7, 8, 9, 10}. We provide the averages of

CPU time, number of iterations, and percentage of error between objective values F TV (x)
and F TV (xn) obtained by applying Algorithm 1 for the 20 observations (bi)1≤i≤20 and for
κ ∈ {6, 7, 8, 9, 10}. The tolerance is set as ε = 10−6. We observe that the algorithm
becomes more efficient (in time and iterations) and accurate (in terms of the objective
value) as long as parameters approach the boundary. This conclusion is confirmed in
Figure 2.1, which shows the performance obtained with the observation b13. Henceforth,
we consider only parameters in the boundary of (2.2.71).

2Image Circles obtained from http://links.uwaterloo.ca/Repository.html
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Table 2.1: Averages of CPU time, number of iterations, and percentage of error in the
objective value obtained from Algorithm 1 with τ = σ1 = σ2 = κ/(10

√
1 + ∥∇∥2) and

tolerance 10−6.

ε = 10−6

κ Av. Time(s) Av. Iter. Av.% error o.v.
6 43.22 8729 0.3541
7 40.23 8179 0.3536
8 38.56 7725 0.3533
9 36.43 7340 0.3530
10 34.66 7003 0.3528
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Figure 2.1: Comparison of Algorithm 1 with τ = σ1 = σ2 = κ/(10
√

1 + ∥∇∥2)), for image
reconstruction from observation b13.
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Next, we compare Algorithm 1 when τσ1∥∇∥2 + τσ2 = 1, with alternative algorithms
in [25, Theorem 3.3], [25, Theorem 3.1] or [56, Corollary 4.2], [12, Theorem 3.1], and
[45], which are called “Condat”, “Condat-Vũ”, “MS”, and “AFBS”, respectively. In or-
der to provide a fair comparison in our example, we approximate the best step-sizes by
considering a mesh on the feasible set defined by the conditions allowing convergence for
each algorithm. In the case when ε = 10−6, the best performance of Condat-Vũ is ob-
tained by setting τ = 1.2 and σ = 0.99 · (2− τ)/(2τ∥∇∥2) which is next to the boundary
of condition στ∥∇∥2 < (1 − τ/2). For MS, the performance is better when the only
step-size τ is next to the boundary of the condition τ < 1/

√
1 + ∥∇∥2, which leads us

to set τ = 0.99/
√

1 + ∥∇∥2. For AFBS, we found as best parameters τ = 0.13 and
λn ≡ 1.7/(65n+ 10)0.505 (see [45]). In the case of Condat, we consider 34 cases of param-
eters τ and σ satisfying στ(1 + ∥∇∥2) = 1, by setting τk = δk/(800

√
1 + ∥∇∥2) and σk =

800/(δk
√

1 + ∥∇∥2), where δ = 8001/8 and k ∈ {1, . . . , 34}. For Algorithm 1 we consider
the same parameters (τk)1≤k≤34 than those in Condat, and we set σℓ

1,k = (1− ℓ)/(τk∥∇∥2)
and σℓ

2,k = ℓ/τk, for ℓ ∈ 10−1 · {5, 0.1, 0.05, 0.01, 0.005, 0.003}, in view of (2.2.71). In Ta-
ble 2.2 we provide the averages of CPU time, number of iterations, and the percentage
of error between objective values F TV (x) and F TV (xn) obtained by previous algorithms
with tolerance ε = 10−6 considering the observations (bi)1≤i≤20. We show the best 5 cases
for Algorithm 1 (k ∈ {20, . . . , 24}) and the best case for Condat (k = 22). We observe
that Algorithm 1 and Condat reduce drastically the computational time and iterations
obtained in Table 2.1, which shows the advantage of searching optimal parameters in the
boundary of the condition of convergence. We also observe in Table 2.2 that Algorithm 1
(k = 22 and ℓ = 0.001) is the most efficient method for this tolerance, followed closely by
Condat (k = 22). Both methods outperform drastically the competitors. In Figure 2.2
we show the relative error versus iterations and time for the observation b13, confirming
previous results.

In order to make a more precise comparison of Algorithm 1 and Condat, we consider a
smaller tolerance ε = 10−8. The obtained results are shown in Table 2.3 and Figure 2.3. We
observe that Algorithm 1 (k = 21 and ℓ = 0.001) achieves the tolerance in approximately
11% less CPU time than Condat in its best case (k = 21). The efficiency in the case of
the observation b13 is illustrated in Figure 2.3.

The reconstructed images, after 100 iterations, for the different algorithms are shown
in Figure (2.4). The best reconstruction, in terms of objective value F TV and PSNR (Peak
signal-to-noise ratio), are obtained by Condat and Algorithm 1.

2.2.5.2 Split-ADMM in an academical example

In this section, we implement Algorithm 2.2.14, Corollary 2.2.19, and ADMM in (2.2.65)
for solving an academical example in the context of Example 2.2.11. We compare their
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Table 2.2: Averages of CPU time, number of iterations, and percentage of error in the
objective value for Algorithm 1 with τσ1∥∇∥2+ τσ2 = 1, Condat, Condat-Vũ, AFBS, and
MS with tolerance 10−6.

ε = 10−6

Algorithm τ σ1 Av. Time(s) Av. Iter. Av. % error o.v.

Alg.1

0.77 0.16 21.12 4106 0.3531
1.17 0.11 15.33 3223 0.3562
1.77 0.07 13.97 2787 0.3649
2.69 0.05 14.36 2891 0.3771
4.09 0.03 16.23 3372 0.3907

Condat 1.77 - 14.89 2853 0.3673
Condat-Vũ 1.2 - 28.19 3539 0.3738

MS 0.33 - 62.48 6193 0.3506
AFBS 0.13 - 85.76 11104 0.6611
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Figure 2.2: Comparison of Algorithm 1 with τσ1∥∇∥2 + τσ2 = 1, Condat, Condat-Vũ,
AFBS, and MS (observation b13).
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Table 2.3: Averages of CPU time, number of iterations, and percentage of error in the
objective value for Algorithm 1 with τσ1∥∇∥2 + τσ2 = 1 and Condat with tolerance 10−8.

ε = 10−8

Algorithm τ σ1 Av. Time(s) Av. Iter. Av. % error o.v.

Alg. 1

0.77 0.16 93.36 19560 0.3514
1.17 0.11 83.15 17561 0.3515
1.77 0.07 100.06 20796 0.3515
2.69 0.05 128.80 26801 0.3516
4.09 0.03 160.92 33709 0.3517

Condat 1.17 - 93.77 18451 0.3515
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Figure 2.3: Comparison of Algorithm 1 with τσ1∥∇∥2+ τσ2 = 1 and Condat (observation
b13).
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(a) Original, FTV (x) =
10.32

(b) Blurry/noisy

b13, FTV (b) = 53.13,
PSNR=22.15

(c) AFBS, FTV (x100) =
11.28, PSNR=25.53.

(d) MS, FTV (x100) =
10.56, PSNR=26.38.

(e) Condat-Vũ,

FTV (x100) = 10.94,
PSNR=28.38.

(f) Condat (k = 21),

FTV (x100) = 10.57,
PSNR=28.80.

(g) Alg. 1 (k = 21, ℓ =

0.001), FTV (x100) = 10.55,
PSNR=28.80.

Figure 2.4: Reconstructed image, after 100 iterations, from blurred and noisy image using
AFBS, MS, Condat-Vũ, Condat and Alg. 1.
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performances when solving the following optimization problem

min
x∈RN

F (x) = h(x− z) + α∥Mx∥1, (2.2.72)

where h : RN → R is defined by

h : x = (ξi)1≤i≤n 7→
N∑
i=1

ϕ(ξi), ϕ : R → R : ξ 7→


|ξ| − δ

2
, if |ξ| > δ;

ξ2

2δ
, if |ξ| ≤ δ,

(2.2.73)

δ > 0, z ∈ RN , α > 0, and M is a N×N symmetric positive definite real matrix. The first
term in (2.2.72) is a data fidelity penalization using the Huber distance and the second
term imposes sparsity in the solution. This type of problems appears naturally in image
and signal denoising (see, e.g., [22, 43, 47, 51]).

Since M is symmetric, there exist N × N real matrices P and D, such that P⊤ =
P−1, D is diagonal, and M = PDP⊤. By setting g = h(· − z), f = α∥ · ∥1, K =
PD1−ηP⊤, and T = PDηP⊤, for some η ∈ [0, 1], we deduce that KT = M and (2.2.72)
is a particular instance of (P ). Next, we illustrate the efficiency of Algorithm 2.2.14 for
different values of η ∈ [0, 1]. Observe that, in the case when η = 0 we have T = Id
and Algorithm 2.2.14 reduces to the algorithm in Corollary 2.2.19. On the other hand,
in the case when η = 1 we have K = Id and Algorithm 2.2.14 reduces to ADMM in
(2.2.65). We have proxf : (ξi)1≤i≤n 7→ prox|·|(ξi), where prox|·| is the scalar soft-thresholder
operator [3, Example 24.34(iii)]. Note that, since kerT = {0}, for every η ∈ [0, 1], the
optimization problem in the second step of (2.2.47) admits a unique solution, in view
of Remark 2.2.18(3). Therefore, when Υ = τ Id and Σ = σId, Algorithm 2.2.14 in this
example reads as follows.

Algorithm 2

1: Fix τ > 0, p0, q0, x0 ∈ RN , ε > 0, and r0 > ε.
2: while rn > ε do
3: yn =xn + τ(KTpn − qn)
4: pn+1 =zer

(
σ∇h(· − z) + T ∗(T · −(Tpn − σK∗yn)

))
5: qn+1 = proxf/τ (xn/τ +KTpn+1)
6: xn+1 = xn + τ(KTpn+1 − qn+1)
7: un+1 = σK∗(xn+1 − xn)− Tpn+1

8: rn+1 = R(xn+1, un+1, xn, un)
9: end while
10: return (pn+1, qn+1, xn+1)

Note that the step 4 in Algorithm 2 involves the resolution of a non-linear equation
when η > 0. On the other hand, in the case when η = 0, we have T = Id and, as noticed in
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Remark 2.2.20(3), the step 4 can be computed explicitly by using proxg = z+proxh(·− z)
[3, Proposition 23.17(iii)] and the fact that δh is the real Huber function (see [3, Example
8.44&Example 24.9]). We consider as stopping criterion the primal-dual relative error
defined in (2.2.70).

We compare the performance of Algorithm 2 when η ∈ {0, 0.8, 0.9, 1} with the standard
solver fmincon of MATLAB for N ∈ {100, 250, 500} and different values of the minimum
and maximum eigenvalues λmax ≥ λmin > 0 of the matrix M . Since the expected value of
λmax (resp. λmin) of random matrices generated by a normal distribution increases (resp.
decreases) as N increases (see [33, Table 1.2]), we consider three classes of matrices with
condition number κ = λmax/λmin = 50 for each dimension N ∈ {100, 250, 500}:

• Class A: Class of matrices M with small eigenvalues (λmax = N/1000).

• Class B: Class of matrices M with average eigenvalues (λmax = 4N).

• Class C: Class of matrices M with large eigenvalues (λmax = 100N).

For each class, we generate 30 random matrices using the randn function of MATLAB and
the eigenvalues of each randomly generated matrix M is forced to satisfy the conditions of
each class after a singular value decomposition M = PDP⊤. We next generate T and K
as described before. Step 4 in Algorithm 2 is computed via fsolve function of MATLAB
(for η > 0). We define the percentage of improvement of an algorithm with respect to
fmincon via In̄ = (F − F (pn̄)) · 100/F , where F stands for the value of the function
obtained by fmincon with tolerance 10−14 and F (pn̄) is the value of the function obtained
by Algorithm 2 when it stops in iteration n̄. Finally, we set the tolerance ε = 10−6 and
τ = 1 in Algorithm 2.

Table 2.4 provides the averages of CPU time, iterations, and percentage of improvement
with respect to fmincon of Algorithm 2 in the cases η ∈ {0, 0.8, 0.9, 1} for the 30 random
matrices in each class and N ∈ {100, 250, 500}. We split our analysis of the results in the
three classes of random matrices.

The best performance in the class A (small eigenvalues) is obtained by the case when
η = 0 (Corollary 2.2.19) in each dimension. The function value is very close to the one
obtained by fmincon (difference of 10−5%). For this class, the cases when η ∈ {0.8, 0.9}
are less accurate and ADMM (η = 1) is even more precise but much slower than the
case when η = 0 for this class. This is explained by a very low cost per iteration and a
comparable average number of iterations of the case when η = 0.

On the other hand, for matrices belonging to the class B (average eigenvalues), the
most efficient method is SADMM with η = 0.9. The method needs very few number
of iterations on average and it is more accurate than fmincon, since In̄ is positive. This
feature is also verified in η ∈ {0.8, 1} but the number of iterations and computational time
is larger. We observe that the case when η = 0 shows a very large number of iterations
for achieving convergence and looses precision as the dimension increases. We conclude
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that SADMM outperforms drastically ADMM and the algorithm of Corollary 2.2.19, for
suitable factorizations of matrices M with average eigenvalues.

Finally, ADMM (η = 1) is the best algorithm for the class C. It needs a very few number
of iterations on average for achieving convergence, which nicely scales with the dimension.
The computational time is around 1/3 of the closest competitor and the precision is as
good as fmincon. SADMM algorithms when η ∈ {0.8, 0.9} are similarly accurate but much
slower. The case when η = 0 is very far from the solution and extremely slow for this class
in all dimensions.

Table 2.4: Performance of Algorithm 2 for N ∈ {100, 250, 500}, η ∈ {0, 0.8, 0.9, 1} and
classes A, B, and C.

N Class η 0 0.8 0.9 1

100

A
Av. time 0.019 4.86 4.92 4.37
Av. iter 688 704 717 656

Av. In̄ (%) -1.8 · 10−5 -0.47 -0.07 -1.5 · 10−6

B
Av. time 17.52 1.15 0.50 5.41
Av. iter 798258 118 49 519

Av. In̄ (%) 0.63 0.36 0.33 0.64

C
Av. time 31.44 3.77 1.07 0.34
Av. iter 1410638 395 107 30

Av. In̄ (%) -1607 -8.4 · 10−8 -8.1 · 10−8 -5.1 · 10−8

250

A
Av. time 0.036 8.94 9.25 8.88
Av. iter 380 359 387 393

Av. In̄ (%) -1.6 · 10−5 -1.03 -0.18 -8 · 10−6

B
Av. time 136.82 5.54 2.61 32.15
Av. iter 1547593 143 64 886

Av. In̄ (%) -0.15 0.18 0.19 0.25

C
Av. time 85.28 27.14 5.83 1.76
Av. iter 971230 761 120 39

Av. In̄ (%) -18287 -1.3 · 10−7 -9.5 · 10−8 -3.3 · 10−8

500

A
Av. time 0.067 13.41 13.58 13.52
Av. iter 123 128 129 132

Av. In̄ (%) 7.2 · 10−5 -1.47 -0.30 8.2 · 10−5

B
Av. time 581.25 39.99 23.95 113.24
Av. iter 1249041 248 162 740

Av. In̄ (%) -2.32 0.13 0.13 0.15

C
Av. time 205.34 193.95 32.09 12.31
Av. iter 419896 1200 182 46

Av. In̄(%) -261808 -1.8 · 10−7 -1.5 · 10−7 -9.4 · 10−8
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Chapter 3

Primal-Dual Algorithm with Critical
Step-Sizes and Relaxation
Parameters

3.1 Introduction and Main Results

In this section we provide a theoretical study of the relaxed primal-dual splitting [42]
including critical preconditioners for solving the following composite monotone inclusion.
We present an alternative formulation of the primal-dual algorithm that differs from the
convergence analysis of SDR algorithm made in Theorem 2.2.6, in which, the inclusion of
relaxation parameters is not clear.

Problem 3.1.1. Let H and G be a real Hilbert spaces, let A : H → 2H and B : G → 2G

be maximally monotone operators, and let L : H → G be a linear bounded operator. The
problem is to find (x̂, û) ∈ Z, where

Z =
{
(x, u) ∈ H × G

∣∣ 0 ∈ Ax+ L∗u, 0 ∈ B−1u− Lx
}

(3.1.1)

is assumed to be non-empty.

Ir order to include the critical preconditioners and relaxation parameters on the primal-
dual algorithm, we study Krasnosel’skĭı-Mann (KM) iterations defined in the range of
monotone self-adjoint linear operators in the following result.

Proposition 3.1.2. Let (H, ⟨· | ·⟩) be a real Hilbert space, let V : H → H be a monotone
self-adjoint linear bounded operator such that ran V is closed, and let S : H → H be such
that FixS ̸= ∅, that S = S ◦ Pran V , and that (Pran V ◦ S)|ran V is quasinonexpansive in
(ran V , ⟨· | ·⟩V ). Define

T : ran V → ran V : x 7→ Pran V ◦ Sx (3.1.2)
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and consider the sequence (xn)n∈N defined by the recurrence

x0 ∈ H, (∀n ∈ N) xn+1 = (1− λn)xn + λnSxn. (3.1.3)

Moreover, suppose that one of the following holds:

(i) T is firmly quasinonexpansive, Id − T is demiclosed at 0 in (ran V , ⟨· | ·⟩V ), and
(λn)n∈N is a sequence in [ε, 2− ε] for some ε ∈ ]0, 1[.

(ii) T is α−averaged nonexpansive in (ran V , ⟨· | ·⟩V ) for some α ∈ ]0, 1[ and (λn)n∈N
is a sequence in [0, 1/α] such that

∑
n∈N λn(1− αλn) = +∞.

Then the following hold:

1. (Pran V xn)n∈N is Féjer monotone in (ran V , ⟨· | ·⟩V ) with respect to FixT .

2. (Pran V (Sxn − xn))n∈N converges strongly to 0 in (ran V , ⟨· | ·⟩V ).

3. (Pran V xn)n∈N converges weakly in (ran V , ⟨· | ·⟩V ) to some x̂ ∈ FixT and Sx̂ ∈
FixS.

To obtain the convergence of the relaxed primal-dual algorithm with critical precondi-
tioners we prove that this method defines KM iterations in the range of the operator V
given by

V : H → H : (x, u) 7→
(
Υ−1x− L∗u,Σ−1u− Lx

)
, (3.1.4)

where Σ : G → G and Υ : H → H are strongly monotone self-adjoint linear operators such
that ∥

√
ΣL

√
Υ∥ ≤ 1. This operator is monotone self-adjoint and linear with non-trivial

kernel. In addition, to ensure convergence, we prove that V is cocoercive and we assume
that ranV is closed, which is equivalent to the closure of ran (Σ−1−LΥL∗). The following
is the main result of this section.

Theorem 3.1.3. In the context of Problem 3.1.1, let V be the operator defined in (3.1.4),
where Σ : G → G and Υ : H → H are self-adjoint linear strongly monotone operators such
that ∥

√
ΣL

√
Υ∥ ≤ 1, and suppose that ran V is closed. Moreover, let (λn)n∈N be a sequence

in [0, 2] satisfying
∑

n∈N λn(2−λn) = +∞, and consider the sequence
(
(xn, un)

)
n∈N defined

by the recurrence

(∀n ∈ N)

 pn+1 = JΥA(xn −ΥL∗un)
qn+1 = JΣB−1 (un + ΣL(2pn+1 − xn))
(xn+1, un+1) = (1− λn)(xn, un) + λn(pn+1, qn+1),

(3.1.5)

where (x0, u0) ∈ H × G. Then
(
Pran V (xn, un)

)
n∈N converges weakly in (ran V , ⟨⟨· | ·⟩⟩V )

to some (ŷ, v̂) ∈ H × G such that(
JΥA(ŷ −ΥL∗v̂), JΣB−1 (v̂ + ΣL(2JΥA(ŷ −ΥL∗v̂)− ŷ))

)
(3.1.6)

is a solution to Problem 3.1.1.
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The previous theorem generalizes results in [19, 21, 42] including critical precondition-
ers, variable metrics, and relaxation parameters. We also recover the convergence of the
Douglas-Rachford splitting algorithm.

Proposition 3.1.4. In the context of Problem 3.1.1, set L = Id, let Υ be a strongly mono-
tone self-adjoint linear operator, let (λn)n∈N be a sequence in [0, 2] satisfying

∑
n∈N λn(2−

λn) = +∞, and consider the sequence
(
(xn, un)

)
n∈N defined by the recurrence

(∀n ∈ N)

 pn+1 = JΥA(xn −Υun)
qn+1 = JΥ−1B−1

(
un +Υ−1(2pn+1 − xn)

)
(xn+1, un+1) = (1− λn)(xn, un) + λn(pn+1, qn+1),

(3.1.7)

where (x0, u0) ∈ H × H. Then, by setting, for every n ∈ N, zn = xn − Υyn, (zn)n∈N
converges weakly in H to some ẑ ∈ Fix (JΥB ◦ (2JΥA − Id) + (Id− JΥA)) and(

JΥAẑ,−Υ−1(ẑ − JΥAẑ)
)

is a solution to Problem 3.2.1. Moreover, we have

(∀n ∈ N) zn+1 = (1− λn)zn + λnJΥB ◦ (2JΥA − Id)zn + (Id− JΥA)zn. (3.1.8)

We finalize the article with numerical experiments in total variation image restoration.
From these experiments, we can observe that including relaxation parameters and critical
preconditioners the numerical convergence of the method is accelerated.

3.2 Article: Primal-dual Splittings as Fixed Point It-

erations in the Range of Linear Operators1

Abstract In this paper we study the relaxed primal-dual algorithm for solving composite
monotone inclusions in real Hilbert spaces with critical preconditioners. Our approach is
based in new results on the asymptotic behaviour of Krasnosel’skĭı-Mann (KM) iterations
defined in the range of monotone self-adjoint linear operators. These results generalize the
convergence of classical KM iterations aiming at approximating fixed points. We prove
that the relaxed primal-dual algorithm with critical preconditioners define KM iterations
in the range of a particular monotone self-adjoint linear operator with non-trivial kernel.
We then deduce from our fixed point approach that the shadows of primal-dual iterates
on the range of the linear operator converges weakly to some point in this vector subspace
from which we obtain a solution. This generalizes [21, Theorem 3.3] to infinite dimen-
sional relaxed primal-dual monotone inclusions involving critical preconditioners. The

1[8] Luis M. Briceño-Arias and Fernando Roldán. Primal-dual splitting as fixed point iterations in the
range of linear operators, 2019, https://arxiv.org/abs/1910.02329
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Douglas-Rachford splitting (DRS) is interpreted as a particular instance of the primal-
dual algorithm when the step-sizes are critical and we recover classical results from this
new perspective. We implement the relaxed primal-dual algorithm with critical precondi-
tioners in total variation reconstruction and we illustrate its flexibility and efficiency.

3.2.1 Introduction

In this paper we provide a theoretical study of the relaxed primal-dual splitting [42] for
solving the following composite monotone inclusion.

Problem 3.2.1. Let H and G be a real Hilbert spaces, let A : H → 2H and B : G → 2G

be maximally monotone operators, and let L : H → G be a linear bounded operator. The
problem is to find (x̂, û) ∈ Z, where

Z =
{
(x, u) ∈ H × G

∣∣ 0 ∈ Ax+ L∗u, 0 ∈ B−1u− Lx
}

(3.2.1)

is assumed to be non-empty.

It follows from [9, Proposition 2.8] that any solution (x̂, û) to Problem 3.2.1 satisfies
that x̂ is a solution to the primal inclusion

find x ∈ H such that 0 ∈ Ax+ L∗BLx (3.2.2)

and û is solution to the dual inclusion

find u ∈ G such that 0 ∈ B−1u− LA−1(−L∗u). (3.2.3)

Conversely, if x̂ is a solution to (3.2.2) then there exists ũ solution to (3.2.3) such that
(x̂, ũ) ∈ Z and the dual argument also holds. In the particular case when A = ∂f
and B = ∂g for lower semicontinuous convex proper functions f : H → ]−∞,+∞] and
g : G → ]−∞,+∞], we have that Z ⊂ P×D, where P is the set of solutions to the convex
optimization problem

min
x∈H

f(x) + g(Lx) (3.2.4)

and D is the set of solutions to its Fenchel-Rockafellar dual

min
u∈G

g∗(u) + f ∗(−L∗u). (3.2.5)

Problem 3.2.1 and its particular optimization case model a wide class of problems in
engineering going from from mechanical problems [26, 28, 29], differential inclusions [1, 40],
game theory [10], image processing problems as image restoration and denoising [14, 16,
22], traffic theory [7, 25, 27], among other disciplines.
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In the last years, several algorithms have been proposed in order to solve Problem 3.2.1
and some generalizations involving cocoercive operators [9, 42, 31]. One of the most used,
is the algorithm proposed in [20] (see also [42, 5, 6] and [37, 15] in the context of (3.2.4)),
which iterates

(∀n ∈ N)

 pn+1 = JΥA(xn −ΥL∗un)
qn+1 = JΣB−1

(
un + ΣL(2pn+1 − xn)

)
(xn+1, yn+1) = (1− λn)(xn, yn) + λn(pn+1, qn+1),

(3.2.6)

where (x0, u0) ∈ H × G, (λn)n∈N ⊂ ]0, 2[, and preconditioners Υ: H → H and Σ: G → G
are strongly monotone self-adjoint linear bounded operators such that ∥

√
ΣL

√
Υ∥ < 1.

It turns out that (3.2.6) corresponds to the relaxed proximal-point algorithm [38, 34]
associated to the operator V −1M , where M : (x, u) 7→ (Ax + L∗u) × (B−1u − Lx) is
maximally monotone in H⊕G [9, Proposition 2.7(iii)] and the self-adjoint linear bounded
operator

V : H → H : (x, u) 7→
(
Υ−1x− L∗u,Σ−1u− Lx

)
(3.2.7)

is strongly monotone if ∥
√
ΣL

√
Υ∥ < 1. Hence, V −1M is maximally monotone in the

real Hilbert space (H×G, ⟨· | V ·⟩) and the convergence is a consequence of [38, 34]. Note
that JM is also firmly nonexpansive in H ⊕ G, however it has no explicit computation.
Non-standard metrics are widely used not only to obtain explicit resolvent computations
but also to accelerate algorithms [11, 21, 31, 42, 23, 19]. In the presence of critical precon-
ditioners, i.e., ∥

√
ΣL

√
Υ∥ = 1, the non-standard metric approach fails since kerV ̸= {0}

and, hence, ⟨· | V ·⟩ is not an inner product in H × G. Hence, the convergence of (3.2.6)
when ∥

√
ΣL

√
Υ∥ ≤ 1 in the context of Problem 3.2.1 is an open question, which is par-

tially answered in [21, Theorem 3.3] for solving (3.2.4) in a finite dimensional setting when
Σ = σId and Υ = τ Id. In the particular case when λn ≡ 1, the weak convergence of (3.2.6)
when ∥

√
ΣL

√
Υ∥ ≤ 1 is deduced in [12] from an alternative formulation of (3.2.6). This

formulation in the case when L = Id, generates primal-dual iterates in the graph of A and,
therefore, the argument does not hold when relaxation steps are included in general.

In this paper we generalize [21, Theorem 3.3] to the monotone inclusion in Prob-
lem 3.2.1 in the infinite dimensional setting with critical preconditioners. Our approach
is based on a fixed point theory restricted to (ran V , ⟨· | V ·⟩), which is a real Hilbert
space under the condition ran V closed. We obtain the weak convergence of Kras-
nosel’skĭı-Mann iterations governed by firmly quasinonexpansive and averaged operators
in (ran V , ⟨· | V ·⟩), which generalizes [17, Theorem 5.2(i)] and [3, Proposition 5.16]. This
result is interesting in its own right. It is worth to notice that most of known algo-
rithms can be seen as fixed point iterations of operators belonging to the previous classes
[5, 6, 9, 21, 31]. Our approach gives new insights on primal-dual algorithms: the con-
vergence of primal-dual iterates in H follows from the convergence of their shadows in
ran V .
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We also provide a detailed analysis of the case L = Id and relations of primal-dual
algorithms with the relaxed Douglas-Rachford splitting (DRS) [24, 32]. We give a primal-
dual version of DRS derived from (3.2.6) when L = Id and we recover the weak convergence
of an auxiliary sequence whose primal-dual shadow is a solution to Problem 3.2.1, as in
[24, 32].

We finish this paper by providing a numerical experiment on total variation image
reconstruction, in which the advantages of using critical preconditioners and relaxation
steps are illustrated.

The paper is organized as follows. In Section 3.2.2.1 we set our notation and some
preliminaries. In Section 3.2.2.2 we study the fixed point problem on the range of linear
operators and we provide conditions for the convergence of fixed point iterations governed
by firmly quasinonexpansive or averaged nonexpansive operators. In Section 3.2.3 we
apply fixed point results to the particular case of primal-dual monotone inclusions and we
provide several connections with other results in the literature. In Section 3.2.4, we study
in detail the particular case when L = Id, which is connected with Douglas–Rachford
splitting. Finally, in Section 3.2.5 we provide numerical experiments in image processing.

3.2.2 Preliminaries

In this section we first provide our notation and some preliminaries. Next we study a
specific fixed point problem involving the range of a self-adjoint monotone linear operator
and we provide the convergence of a Krasnosel’skĭı–Mann iteration in this vector sub-
space, which is interesting in its own right. The weak convergence of (3.2.6) with critical
preconditioners is derived from previous fixed point analysis.

3.2.2.1 Notation

Throughout this paper H and G are real Hilbert spaces. We denote the scalar product
by ⟨· | ·⟩ and the associated norm by ∥ · ∥. The symbols ⇀ and → denotes the weak and
strong convergence, respectively. Given a linear bounded operator L : H → G, we denote
its adjoint by L∗ : G → H, its kernel by kerL, and its range by ranL. Id denotes the
identity operator on H. Let D ⊂ H be non-empty and let T : D → H. The set of fixed
points of T is given by FixT =

{
x ∈ D

∣∣ x = Tx
}
. Let β ∈ ]0,+∞[. The operator T is

β−cocoercive if

(∀x ∈ D)(∀y ∈ D) ⟨x− y | Tx− Ty⟩ ≥ β∥Tx− Ty∥2, (3.2.8)

it is β−strongly monotone if

(∀x ∈ D)(∀y ∈ D) ⟨x− y | Tx− Ty⟩ ≥ β∥x− y∥2, (3.2.9)
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it is nonexpansive if

(∀x ∈ D)(∀y ∈ D) ∥Tx− Ty∥ ≤ ∥x− y∥, (3.2.10)

it is quasinonexpansive if

(∀x ∈ D)(∀y ∈ FixT ) ∥Tx− y∥ ≤ ∥x− y∥, (3.2.11)

and it is firmly quasinonexpansive (or class T) if

(∀x ∈ D)(∀y ∈ FixT ) ∥Tx− y∥2 ≤ ∥x− y∥2 − ∥Tx− x∥2. (3.2.12)

Let α ∈ ]0, 1[. The operator T is α−averaged nonexpansive if T = (1 − α)Id + αR for
some nonexpansive operator R : H → H, and T is firmly nonexpansive if it is 1

2
−averaged

nonexpansive.
Given a self-adjoint monotone linear bounded operator V : H → H, we denote ⟨· | ·⟩V =

⟨· | V ·⟩, which is bilinear, positive semi-definite, and symmetric. Moreover, there exists a
self-adjoint monotone linear bounded operator

√
V : H → H such that

V =
√
V
√
V , (∀x ∈ H) ⟨x | V x⟩ = ∥

√
V x∥2, (3.2.13)

and ranV = ran
√
V . In addition, if V is strongly monotone, ⟨· | ·⟩V defines an inner

product on H and we denote by ∥ · ∥V =
√

⟨· | ·⟩V the induced norm.
Let A : H → 2H be a set-valued operator. The domain, range, and graph of A

are dom A =
{
x ∈ H

∣∣ Ax ̸= ∅
}
, ran A =

{
u ∈ H

∣∣ (∃x ∈ H)u ∈ Ax
}
, and graA ={

(x, u) ∈ H ×H
∣∣ u ∈ Ax

}
, respectively. The set of zeros ofA is zerA =

{
x ∈ H

∣∣ 0 ∈ Ax
}
,

the inverse of A is A−1 : H → 2H : u 7→
{
x ∈ H

∣∣ u ∈ Ax
}
, and the resolvent of A is

JA = (Id + A)−1. We have zerA = Fix JA. The operator A is monotone if

(∀(x, u) ∈ graA)(∀(y, v) ∈ graA) ⟨x− y | u− v⟩ ≥ 0 (3.2.14)

and it is maximally monotone if it is monotone and there exists no monotone operator
B : H → 2H such that graB properly contains graA, i.e., for every (x, u) ∈ H ×H,

(x, u) ∈ graA ⇔ (∀(y, v) ∈ graA) ⟨x− y | u− v⟩ ≥ 0. (3.2.15)

Let C be a non-empty subset of H and let
(
xn

)
n∈N be a sequence in H. Then

(
xn

)
n∈N is

Fejér monotone with respect to C if

(∀x ∈ C)(∀n ∈ N) ∥xn+1 − x∥ ⩽ ∥xn − x∥ . (3.2.16)

Let D be a non-empty weakly sequentially closed subset of H, let T : D → H, and let
u ∈ H. Then T is demiclosed at u in (H, ⟨· | ·⟩) if, for every sequence (xn)n∈N in D and
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every x ∈ D such that xn ⇀ x and Txn → u in (H, ⟨· | ·⟩), we have have Tx = u. In
addition, T is demiclosed if it is demiclosed at every point in D.

We denote by Γ0(H) the class of proper lower semicontinuous convex functions f : H →
]−∞,+∞]. Let f ∈ Γ0(H). The Fenchel conjugate of f is defined by f ∗ : u 7→ supx∈H(⟨x | u⟩−
f(x)), which is a function in Γ0(H), the subdifferential of f is the maximally monotone
operator

∂f : x 7→
{
u ∈ H

∣∣ (∀y ∈ H) f(x) + ⟨y − x | u⟩ ≤ f(y)
}
,

(∂f)−1 = ∂f ∗, and we have that zer∂f is the set of minimizers of f , which is denoted
by argminx∈H f . Given a strongly monotone self-adjoint linear operator Υ : H → H, we
denote by

proxΥf : x 7→ argmin
y∈H

(
f(y) +

1

2
∥x− y∥2Υ

)
, (3.2.17)

and by proxf = proxIdf . We have proxΥf = JΥ−1∂f [3, Proposition 24.24(i)] and it is single
valued since the objective function in (3.2.17) is strongly convex. Moreover, it follows
from [3, Proposition 24.24] that

proxΥf = Id− Υ−1 proxΥ
−1

f∗ Υ = Υ−1 (Id− proxΥ
−1

f∗ )Υ. (3.2.18)

Given a non-empty closed convex set C ⊂ H, we denote by PC the projection onto C
and by ιC ∈ Γ0(H) the indicator function of C, which takes the value 0 in C and +∞
otherwise. For further properties of monotone operators, nonexpansive mappings, and
convex analysis, the reader is referred to [3].

The following result allows us to define algorithms in a real Hilbert space defined by
the range of non-invertible self-adjoint linear bounded operators. The result is a direct
consequence of [3, Fact 2.26] and (3.2.13).

Proposition 3.2.2. Let V : H → H be a monotone self-adjoint linear bounded operator.
The following statements are equivalent.

1. ran V is closed.

2. (∃α > 0)(∀x ∈ ran V )
⟨V x | x⟩ ≥ α∥x∥2. (3.2.19)

Moreover, if 1 or 2 holds, then (ran V, ⟨· | ·⟩V ) is a real Hilbert space.

The following example exhibits a monotone self-adjoint linear bounded operator whose
range is not closed, illustrating that assumption ran V closed is not redundant in our
setting.
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Example 3.2.3. Let ℓ2(R) be the real Hilbert space defined by square summable sequences
in R endowed by the inner product ⟨· | ·⟩ : (x, y) 7→

∑
j≥1 xj yj and consider the monotone

self-adjoint bounded linear operator

V : ℓ2(R) → ℓ2(R) : (xn)n∈N\{0} 7→
(
x1,

x2

2
,
x3

3
, . . .

)
.

By considering the sequence (xn)n∈N ⊂ ℓ2(R) defined by xn
j = 1 for j ≤ n and xn

j = 0 for
j > n... we have V xn → y = (1/j)j∈N\{0} ∈ ℓ2(R) as n → +∞, and y ̸∈ ran V , which
implies that ran V is not closed.

3.2.2.2 Fixed points in the range of linear operators

The following fixed point problem is the basis for the analysis of primal-dual algorithms.

Problem 3.2.4. Let (H, ⟨· | ·⟩) be a real Hilbert space, let V : H → H be a monotone
self-adjoint linear bounded operator such that ran V is closed, and let S : H → H be such
that FixS ̸= ∅, that S = S ◦ Pran V , and that (Pran V ◦ S)|ran V is quasinonexpansive in
(ran V , ⟨· | ·⟩V ). The problem is to

find x ∈ FixS. (3.2.20)

First observe that under the hypotheses on V , Proposition 3.2.2 asserts that (ran V , ⟨· | ·⟩V )
is a real Hilbert space. In the particular case when V = Id, we have ran V = H,
PranV = Id, and Problem 3.2.4 is solved in [17] when S is firmly quasinonexpansive (or
class T), and Id− S is demiclosed at 0, and in [3, 18] when S is averaged nonexpansive.
In the case when V is self-adjoint and strongly monotone, we also have ran V = H,
PranV = Id, and several approaches with non-standard metrics are developed for solving
Problem 3.2.4 by using contractive assumptions on S (see, e.g., [11, 19, 21, 23, 31, 37, 42]).
In all cases, the problem is solved via the Krasnosel’skĭı–Mann iteration

x0 ∈ H, (∀n ∈ N) xn+1 = (1− λn)xn + λnSxn, (3.2.21)

where (λn)n∈N is a strictly positive sequence. The main difference of Problem 3.2.4 with
respect to previous literature is that the contractive property is only guaranteed for the
shadow operator (Pran V ◦ S)|ran V on (ran V , ⟨· | ·⟩V ) without any further assumption
on S. In this section we obtain conditions for ensuring the convergence of the shadow
sequence (Pran V xn)n∈N to a solution to Problem 3.2.4 from (3.2.21). We first need the
following technical lemma.

Lemma 3.2.5. Let Q : H → H and let S : H → H be such that FixS ̸= ∅ and S =
S ◦Q. Then S(Fix (Q ◦ S)) = FixS and, in particular, Fix (Q ◦ S) ̸= ∅.
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Proof. First, let x ∈ FixS. Since S = S ◦Q we have

Sx = x ⇔ S(Qx) = x

⇒ Q ◦ S(Qx) = Qx

hence Qx ∈ Fix (Q ◦ S) and S(Qx) = x. Thus, x ∈ S(Fix (Q ◦ S)) and we conclude
FixS ⊂ S(Fix (Q ◦ S)). Conversely, let x ∈ Fix (Q ◦ S). Since S = S ◦Q, we have

Q(Sx) = x ⇒ S(Q(Sx)) = Sx

⇒ S(Sx) = Sx

⇒ Sx ∈ FixS.

Thus S(Fix (Q ◦ S)) ⊂ FixS and the result follows.

Now we prove that Krasnosel’skĭı–Mann iterations defined by S approximate the so-
lutions to Problem 3.2.4 via their shadows in ranV . We derive our result for firmly
quasinonexpansive (or class T) operators T such that Id− T is demiclosed at 0, and for
α−averaged nonexpansive operators, for some α ∈ ]0, 1[.

Proposition 3.2.6. In the context of Problem 3.2.4, define

T : ran V → ran V : x 7→ Pran V ◦ Sx (3.2.22)

and consider the sequence (xn)n∈N defined by the recurrence

x0 ∈ H, (∀n ∈ N) xn+1 = (1− λn)xn + λnSxn. (3.2.23)

Moreover, suppose that one of the following holds:

(i) T is firmly quasinonexpansive, Id − T is demiclosed at 0 in (ran V , ⟨· | ·⟩V ), and
(λn)n∈N is a sequence in [ε, 2− ε] for some ε ∈ ]0, 1[.

(ii) T is α−averaged nonexpansive in (ran V , ⟨· | ·⟩V ) for some α ∈ ]0, 1[ and (λn)n∈N
is a sequence in [0, 1/α] such that

∑
n∈N λn(1− αλn) = +∞.

Then the following hold:

1. (Pran V xn)n∈N is Féjer monotone in (ran V , ⟨· | ·⟩V ) with respect to FixT .

2. (Pran V (Sxn − xn))n∈N converges strongly to 0 in (ran V , ⟨· | ·⟩V ).

3. (Pran V xn)n∈N converges weakly in (ran V , ⟨· | ·⟩V ) to some x̂ ∈ FixT and Sx̂ is a
solution to Problem 3.2.4.
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Proof. Since V is a monotone bounded self-adjoint linear operator and ran V is closed,
it follows from Proposition 3.2.2 that (ran V , ⟨· | ·⟩V ) is a real Hilbert space. Moreover,
since S = S ◦ Pran V and FixS ̸= ∅, Lemma 3.2.5 yields

S(FixT ) = FixS (3.2.24)

and, hence, FixT ̸= ∅. Therefore, since Pran V is linear, by defining, for every n ∈ N,
yn = Pran V xn, it follows from (3.2.23) and T = T ◦ Pran V that

y0 ∈ ran V , (∀n ∈ N) yn+1 = (1− λn)yn + λnTyn. (3.2.25)

If we assume (i), since infn∈N λn(2− λn) ≥ ε2, 1 and 2 follow from [17, Proposition 4.2] in
the error free case. Finally, it follows from [17, Theorem 5.2(i)] that yn converges weakly
to some ŷ ∈ FixT , and 3 is obtained from (3.2.24).

On the other hand, if we assume (ii), the results follow from [3, Proposition 5.16] and
(3.2.24).

Remark 3.2.7. 1. Previous results does not include summable errors for ease of the
presentation, but they can be included effortlessly.

2. In the case when V is strongly monotone, we have ran V = H, Pran V = Id, and
Proposition 3.2.6(i) and Proposition 3.2.6(ii) are equivalent to [17, Theorem 5.2(i)]
and [3, Proposition 5.16], respectively.

3. In [19, 23], a version of [3, Proposition 5.16] allowing for operators (Sk)k∈N and
(Vk)k∈N varying among iterations is proposed. This modification allows to include
variable step-sizes in primal-dual algorithms. In our context, the difficulty of includ-
ing such generalization lies on the variation of the real Hilbert spaces (ranVk, ⟨· | ·⟩Vk

)k∈N,
which complicates the asymptotic analysis.

3.2.3 Application to Primal-Dual algorithms for monotone in-
clusions

Now we focus on the asymptotic analysis of the relaxed primal-dual algorithm in (3.2.6)
for solving Problem 3.2.1. First, note that Z = zerM , where

M : H → 2H : (x, u) 7→ {(y, v) ∈ H | y ∈ Ax+ L∗u, v ∈ B−1u− Lx} (3.2.26)

is maximally monotone in H = H⊕ G [9, Proposition 2.7(iii)]. We define

V : H → H : (x, u) 7→
(
Υ−1x− L∗u,Σ−1u− Lx

)
, (3.2.27)

where Σ : G → G and Υ : H → H are strongly monotone self-adjoint linear operators
such that ∥

√
ΣL

√
Υ∥ ≤ 1. In the case when, ∥

√
ΣL

√
Υ∥ < 1, V is strongly monotone
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[20, eq. (6.15)] and the primal-dual algorithm is obtained by applying the proximal point
algorithm (PPA) to the maximally monotone operator V −1M in the space (H × G, ⟨⟨· |
·⟩⟩V ) [6, 19, 21, 31, 37, 42]. In the case when ∥

√
ΣL

√
Υ∥ = 1, V is no longer strongly

monotone and ⟨⟨· | ·⟩⟩V does not define an inner product. However, if ran V is closed,
(ranV , ⟨⟨· | ·⟩⟩V ) is a real Hilbert space in view of Proposition 3.2.2, and we obtain the
convergence of the primal-dual algorithm when ∥

√
ΣL

√
Υ∥ ≤ 1 in this Hilbert space using

Proposition 3.2.6. The following result provides conditions on Problem 3.2.1 guaranteeing
that ran V is closed.

Proposition 3.2.8. In the context of Problem 3.2.1, set H = H ⊕ G, let Σ : G → G
and Υ : H → H be strongly monotone self-adjoint linear bounded operators such that
∥
√
ΣL

√
Υ∥ ≤ 1, and let V be the operator defined in (3.2.27). Then, the following hold:

1. V is linear, bounded, self-adjoint, and τσ
τ+σ

-cocoercive, where σ > 0 and τ > 0 are
the strongly monotone constants of Σ and Υ, respectively.

2. The followings statements are equivalent.

(a) ran V is closed in H.

(b) ran (Σ−1 − LΥL∗) is closed in G.
(c) ran (Υ−1 − L∗ΣL) is closed in H.

Proof. 1: It is a direct consequence of [12, Proposition 2.1]. 2: (2a ⇒ 2b). Let (vn)n∈N be
sequence in ran (Σ−1 − LΥL∗) such that vn → v. Therefore, for each n ∈ N, there exists
un ∈ G such that vn = Σ−1un − LΥL∗un. Note that V (ΥL∗un, un) = (0, vn) → (0, v).
Since ran V is closed, there exists some (x, u) ∈ H × G such that V (x, u) = (0, v), i.e.,

V (x, u) = (0, v) ⇔

{
Υ−1x− L∗u = 0

Σ−1u− Lx = v

⇒ Σ−1u− LΥL∗u = v.

Then v ∈ ran (Σ−1 − LΥL∗) and, therefore, ran (Σ−1 − LΥL∗) is closed.
(2b ⇒ 2a). Let

(
(yn, vn)

)
n∈N be a sequence in ran V such that (yn, vn) → (y, v). Then,

for every n ∈ N, there exists (xn, un) such that (yn, un) = V (xn, un), or equivalently,{
yn = Υ−1xn − L∗un

vn = Σ−1un − Lxn.
(3.2.28)

By applying LΥ to the first equation in (3.2.28) and adding it to the second equation, by
the continuity of Υ and L, we obtain

(Σ−1 − LΥL∗)un = LΥyn + vn → LΥy + v. (3.2.29)
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Hence, since ran (Σ−1 − LΥL∗) is closed, there exists u ∈ G such that LΥy + v = (Σ−1 −
LΥL∗)u. We deduce V (Υ(L∗u+ y), u) = (y, v) and, therefore, ran V is closed.

(2a ⇔ 2c). Define Ṽ : G ⊕ H → G ⊕H : (u, x) 7→ (Σ−1u − Lx,Υ−1x − L∗u). By the
equivalence 2a ⇔ 2b ran Ṽ is closed if and only if ran (Υ−1 − L∗ΣL) is closed. Consider
the isometric map Λ : H⊕G → G⊕H : (x, u) 7→ (u, x). Since Λ◦V = Ṽ , ran V is closed
if and only if ran Ṽ is closed and the result follows.

Remark 3.2.9. 1. In the case when ∥
√
ΣL

√
Υ∥ < 1, we have that Υ−1 − LΣL∗ is

strongly monotone and, thus, invertible. This is indeed an equivalence which follows
from [12, eq. (2.7)]. Therefore, ran (Υ−1 − LΣL∗) = G and ran V is closed in view
of Proposition 3.2.8.

2. Assume that ranL = G. Note that, for every u ∈ G, ⟨LΥL∗u | u⟩ ≥ τ∥L∗u∥2 ≥
τα2∥u∥2, where τ > 0 is the strong monotonicity parameter of Υ and the existence of
α > 0 is guaranteed by [3, Fact 2.26]. Hence, by setting Σ = (LΥL∗)−1 we have Σ−1−
LΥL∗ = 0. Hence, ran (Σ−1 − LΥL∗) = {0} which is closed and Proposition 3.2.8
implies that ran V is closed. This case arises in wavelets transformations in image
and signal processing (see, e.g., [33]).

The next theorem is the main result of this section, in which we interpret the primal-
dual splitting as a relaxed proximal point algorithm (PPA) applied to the primal-dual
operator

W : H → 2H : (x, u) 7→ {(y, v) ∈ H | V (y, v) ∈ M (x, u)}, (3.2.30)

where M and V are defined in (3.2.26) and (3.2.27), respectively. Note that, in the case
when ∥

√
ΣL

√
Υ∥ < 1, V is invertible and W = V −1M , which is maximally monotone

in (H, ⟨⟨· | V ·⟩⟩) in view of [3, Proposition 20.24]. This implies that JW is firmly non-
expansive under the same metric [3, Proposition 23.8(iii)]. These properties do not hold
when ∥

√
ΣL

√
Υ∥ = 1, but Pran V ◦ JW is firmly nonexpansive in the real Hilbert space

(ran V , ⟨⟨· | V ·⟩⟩), from which the weak convergence of primal-dual algorithm is obtained.

Theorem 3.2.10. In the context of Problem 3.2.1, let V be the operator defined in
(3.2.27), where Σ : G → G and Υ : H → H are self-adjoint linear strongly monotone
operators such that ∥

√
ΣL

√
Υ∥ ≤ 1, and suppose that ran V is closed. Moreover, let

(λn)n∈N be a sequence in [0, 2] satisfying
∑

n∈N λn(2 − λn) = +∞, and consider the se-
quence

(
(xn, un)

)
n∈N defined by the recurrence

(∀n ∈ N)

 pn+1 = JΥA(xn −ΥL∗un)
qn+1 = JΣB−1 (un + ΣL(2pn+1 − xn))
(xn+1, un+1) = (1− λn)(xn, un) + λn(pn+1, qn+1),

(3.2.31)

74



Chapter 3 Composite Monotone Inclusions in Vector Subspaces

where (x0, u0) ∈ H × G. Then
(
Pran V (xn, un)

)
n∈N converges weakly in (ran V , ⟨⟨· | ·⟩⟩V )

to some (ŷ, v̂) ∈ Fix (Pran V ◦ JW ), where W is defined in (3.2.30). Moreover,(
JΥA(ŷ −ΥL∗v̂), JΣB−1 (v̂ + ΣL(2JΥA(ŷ −ΥL∗v̂)− ŷ))

)
(3.2.32)

is a solution to Problem 3.2.1.

Proof. First, it follows from Proposition 3.2.8(1) that V is a monotone self-adjoint linear
bounded operator. Note that

Fix JW = zerW = zerM = Z ̸= ∅ (3.2.33)

and, for every (x, u) and (p, q) in H,

(p, q) ∈ JW (x, u) ⇔ (x− p, u− q) ∈ W (p, q)

⇔ V (x− p, u− q) ∈ M (p, q)

⇔

{
Υ−1(x− p)− L∗(u− q) ∈ Ap+ L∗q,

Σ−1(u− q)− L(x− p) ∈ B−1q − Lp.

⇔

{
p = JΥA(x−ΥL∗u),

q = JΣB−1 (u+ ΣL(2p− x)) .
(3.2.34)

Hence, JW is single valued and, for every (x, u) ∈ H,

JW (x, u) =
(
JΥA (x−ΥL∗u), JΣB−1(u− ΣLx+ 2ΣLJΥA (x−ΥL∗u))

)
= R

(
Υ−1x− L∗u,Σ−1u− Lx

)
= R(V (x, u)),

where R : (x, u) 7→
(
JΥA(Υx), JΣB−1(Σu+ 2ΣLJΥA(Υx))

)
, which yields

JW = R ◦ V = R ◦ V ◦ PranV = JW ◦ PranV . (3.2.35)

Moreover, by defining T = Pran V ◦ JW , we deduce from V = V ◦ Pran V , (3.2.30),
kerV ⊕ ran V = H, and the monotonicity of M that, for every z and w in ran V ,

⟨⟨Tz − Tw | (Id− T )z − (Id− T )w⟩⟩V
= ⟨⟨JWz − JWw | V (z − JWz)− V (w − JWw)⟩⟩
≥ 0, (3.2.36)

which yields the firm nonexpansivity of T in (ran V , ⟨⟨· | V ·⟩⟩). Therefore, it follows from
(3.2.33) and (3.2.35) that Problem 3.2.1 is a particular instance of Problem 3.2.4 with
S = JW . In addition, (3.2.31) and (3.2.34) yields

(∀n ∈ N) xn+1 = (1− λn)xn + λnJWxn, (3.2.37)

where, for every n ∈ N, xn = (xn, un). Altogether, we obtain the results by applying
Theorem 3.2.6(ii) with α = 1/2 and S = JW .
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Remark 3.2.11. 1. Since JW ◦ Pran V = JW , the sequence
(
PranV (xn, un)

)
n∈N is not

needed in practice. Indeed, since

(∀x ∈ H) ∥x∥V = ∥Pran V x∥V ,

we can use a stopping criteria only involving
(
(xn, un)

)
n∈N.

2. Suppose that G = ⊕m
i=1Gi, B : (ui)1≤i≤m 7→ ×m

i=1Biui, Σ: (ui)1≤i≤m 7→ (Σiui)1≤i≤m,
and L : x 7→ (Lix)1≤i≤m, where, for every i ∈ {1, . . . ,m}, Gi is a real Hilbert space,
Bi is maximally monotone, Σi : Gi → Gi is a strongly monotone self-adjoint linear
bounded operator, and Li : H → Gi is a linear bounded operator. In this context, the
inclusion in (3.2.2) is equivalent to

find x ∈ H such that 0 ∈ Ax+
m∑
i=1

L∗
iBiLix. (3.2.38)

Then, under the assumptions

m∑
i=1

∥∥∥√ΣiLi

√
Υ
∥∥∥2 ≤ 1 and ran

(
Υ−1 −

m∑
i=1

L∗
iΣiLi

)
is closed, (3.2.39)

Proposition 3.2.8 and Theorem 3.2.10 ensures the convergence of (3.2.31), which
reduces to

(∀n ∈ N)


pn+1 = JΥA(xn − Υ

∑m
i=1 L

∗
iui,n)

xn+1 = (1− λn)xn + λnpn+1

for i = 1, . . . ,m⌊
qi,n+1 = JΣiB

−1
i
(ui,n + ΣiLi(2pn+1 − xn))

ui,n+1 = (1− λn)ui,n + λnqi,n+1.

(3.2.40)

Note that (3.2.40) has the same structure than the algorithm in [20, Corolary 6.2]
without considering cocoercive operators and the convergence is guaranteed under the
weaker assumption (3.2.39) in view of Remark 3.2.9(1).

3. In the context of the optimization problem in (3.2.4), (3.2.31) reduces to

(∀n ∈ N)

 pn+1 = proxΥ
−1

f (xn −ΥL∗un)

qn+1 = proxΣ
−1

g∗ (un + ΣL(2pn+1 − xn))
(xn+1, un+1) = (1− λn)(xn, un) + λn(pn+1, qn+1),

(3.2.41)

Under the additional condition ranV closed, Theorem 3.2.10 generalizes [21, The-
orem 3.3] to infinite dimensional spaces and allowing preconditioners and a larger
choice of parameters (λn)n∈N. Indeed, in finite dimensional spaces, ran V is closed,
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Theorem 3.2.10 implies that Pran V (xn, un) → (ŷ, v̂) ∈ ran V in (ran V , ⟨⟨· | ·⟩⟩V )
and, since JW = JW ◦Pran V is continuous, we conclude (pn+1, qn+1) = JW (xn, un) =
JW (Pran V (xn, un)) → JW (ŷ, v̂) ∈ Z. In order to guarantee the convergence of the
relaxed sequence ((xn, un))n∈N, it is enough to suppose (λn)n∈N ⊂ [ϵ, 2− ϵ] for some
ϵ ∈ ]0, 1[, and use the argument in [21, p.473].

4. In the particular case when ∥
√
ΣL

√
Υ∥ < 1, it follows from [19, eq. (6.15)] (see also

[37, Lemma 1]) that V is strongly monotone, which yields ran V = H and Pran V =
Id. Hence, we recover from Theorem 3.2.10 the weak convergence of ((xn, un))n∈N
to a solution to Problem 3.2.1 proved in [6, 19, 21, 31, 37, 42].

5. In the particular instance when λn ≡ 1, the weak convergence of (3.2.31) is deduced
without any range closedness in [12, Remark 3.4(4)]. The result is obtained from an
alternative formulation of the algorithm and the extension to λn ̸≡ 1 is not clear.
As we will show in Section 3.2.5, the additional relaxation step is relevant in the
efficiency of the algorithm.

3.2.4 Case L = Id: Douglas–Rachford splitting

In this section, we study the particular case of Problem 3.2.1 when L = Id. In this
context, the following result is a refinement of Theorem 3.2.10, which relates the primal-
dual algorithm in (3.2.31) with Douglas-Rachford splitting (DRS) when

Υ = Σ−1 is strongly monotone. (3.2.42)

When Υ = τ Id and Σ = σId, (3.2.42) reads στ = 1 and the connection of (3.2.31)
with DRS is discovered in [15, Section 4.2] in the optimization context. However, the
convergence is guaranteed only if τσ < 1, which is extended to the case στ = 1 in [21,
Section 3.1.3] in the finite dimensional setting. Previous connection allows us to recover
the classical convergence results in [24, 32] when Υ = τ Id with our approach. Define the
operator

GΥ,B,A = JΥB ◦ (2JΥA − Id) + (Id− JΥA), (3.2.43)

and we recall that relaxed DRS iterations are defined by the recurrence

z0 ∈ H, (∀n ∈ N) zn+1 = (1− λn)zn + λnGΥ,B,Azn, (3.2.44)

where (λn)n∈N is a sequence in [0, 2].

Proposition 3.2.12. In the context of Problem 3.2.1, set L = Id, let Υ be a strongly mono-
tone self-adjoint linear operator, let (λn)n∈N be a sequence in [0, 2] satisfying

∑
n∈N λn(2−

λn) = +∞, and consider the sequence
(
(xn, un)

)
n∈N defined by the recurrence

(∀n ∈ N)

 pn+1 = JΥA(xn −Υun)
qn+1 = JΥ−1B−1

(
un +Υ−1(2pn+1 − xn)

)
(xn+1, un+1) = (1− λn)(xn, un) + λn(pn+1, qn+1),

(3.2.45)
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where (x0, u0) ∈ H × H. Then, by setting, for every n ∈ N, zn = xn − Υyn, (zn)n∈N
converges weakly in H to some ẑ ∈ FixGΥ,B,A and(

JΥAẑ,−Υ−1(ẑ − JΥAẑ)
)

is a solution to Problem 3.2.1. Moreover, we have

(∀n ∈ N) zn+1 = (1− λn)zn + λnGΥ,B,Azn. (3.2.46)

Proof. Note that, since L = Id, (3.2.27) and (3.2.42) yield V : (x, u) 7→ (Υ−1x−u,Υu−x)
and Remark 3.2.9(2) implies that ran V is closed. Hence, it follows from Theorem 3.2.10
and (3.2.34) in the case L = Id that (Pran V (xn, un))n∈N converges weakly in (ran V , ⟨⟨· |
·⟩⟩V ) to some (ŷ, v̂) ∈ Fix (Pran V ◦ JW ) and

(x̂, û) = JW (ŷ, v̂) =
(
JΥA(ŷ −Υv̂), JΥ−1B−1

(
v̂ +Υ−1(2x̂− ŷ)

) )
∈ Z. (3.2.47)

Set Λ: (x, u) 7→ x−Υu, and Υ : (x, u) 7→ (Υx,Υu). Note that Λ is surjective, that

Λ∗Λ = V ◦Υ, ranV = ranΛ∗, (3.2.48)

and, in view of [3, Fact 2.25(iv)], that

H×H = ranΛ∗ ⊕ kerΛ. (3.2.49)

Then, for every (x, u) ∈ H ×H, it follows from (3.2.30) and (3.2.34) in the case L = Id,
(3.2.42), [3, Proposition 23.34 (iii)], and (3.2.43) that

Λ(JW (x, u)) = JΥA

(
x−Υu)−ΥJΥ−1B−1Υ−1(Υu− x+ 2JΥA (x−Υu)

)
= −JΥA(Λ(x, u)) + Λ(x, u) + JΥB(2JΥA(Λ(x, u))− Λ(x, u))

= GΥ,B,A(Λ(x, u)). (3.2.50)

Moreover, since (ŷ, v̂) ∈ Fix (Pran V ◦ JW ), by using (3.2.50), (3.2.49), and (3.2.48) we
deduce

GΥ,B,A(Λ(ŷ, v̂)) = Λ(JW (ŷ, v̂))

= Λ ◦ Pran Λ∗(JW (ŷ, v̂))

= Λ(Pran V ◦ JW (ŷ, v̂))

= Λ(ŷ, v̂), (3.2.51)

and, thus, defining ẑ = Λ(ŷ, v̂), we obtain ẑ ∈ FixGΥ,B,A. In addition, it follows from
(3.2.47) that x̂ = JΥAẑ and, since (ŷ, v̂) ∈ Fix (Pran V ◦ JW ), we deduce from (3.2.49) and
(3.2.34) that

ẑ = Λ(ŷ, v̂) = Λ (Pran V ◦ JW (ŷ, v̂)) = ΛJW (ŷ, v̂) = Λ(x̂, û) = x̂−Υû, (3.2.52)
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which yields û = −Υ−1(ẑ − JΥAẑ). Furthermore, noting that, for every n ∈ N, zn =
Λ(xn, un), we deduce from (3.2.45), (3.2.34), and (3.2.50) that

(∀n ∈ N) zn+1 = Λ(xn+1, un+1)

= (1− λn)Λ(xn, un) + λnΛ (JW (xn, un))

= (1− λn)zn + λnGΥ,B,Azn. (3.2.53)

Finally, in order to prove the weak convergence of (zn)n∈N to ẑ, fix w ∈ H and set
(p, q) = ((Id + Υ2)−1w,−Υ(Id + Υ2)−1w). We have (p, q) ∈ ran Λ∗, Λ(p, q) = w and it
follows from (3.2.49), (3.2.48), (ŷ, v̂) ∈ ran V = ranΛ∗, and (Pran V (xn, un))n∈N ⇀ (ŷ, v̂)
that

⟨zn − ẑ | w⟩ = ⟨Λ(xn − ŷ, un − v̂) | Λ(p, q)⟩
= ⟨ΛPran Λ∗(xn − ŷ, un − v̂) | Λ(p, q)⟩
= ⟨⟨Pran Λ∗(xn − ŷ, un − v̂) | V (Υp,Υq)⟩⟩
= ⟨⟨Pran Λ∗(xn − ŷ, un − v̂) | (Υp,Υq)⟩⟩V
= ⟨⟨Pran Λ∗(xn, un)− (ŷ, v̂) | (Υp,Υq)⟩⟩V → 0 (3.2.54)

and the result follows.

Remark 3.2.13. 1. From the proof of Proposition 3.2.12, we deduce Λ(Fix (Pran V ◦
JW )) ⊂ FixGΥ,B,A. The converse inclusion is also true, as detailed in Proposi-
tion 3.2.14 in the Appendix.

2. Proposition 3.2.12 provides a connection between classical Douglas–Rachford scheme
[24] and the primal-dual version in (3.2.45), and we obtain that the auxiliary sequence
(zn)n∈N converges weakly to a ẑ whose primal-dual shadow is a primal-dual solution.
In [41] (see also [2, 4]) the weak convergence of the primal-dual shadow sequence is
proved in the case λn ≡ 1, by reformulating DRS as an alternative algorithm with
primal-dual iterates in graA. This technique does not allow for relaxation steps,
since after relaxation the iterates are no longer in graA unless it is affine linear.

3.2.5 Numerical experiments

A classical model in image processing is the total variation image restoration [39], which
aims at recovering an image from a blurred and noisy observation under piecewise constant
assumption on the solution. The model is formulated via the optimization problem

min
x∈[0,255]N

1

2
∥Rx− b∥22 + α∥∇x∥1 =: F TV (x), (3.2.55)
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where x ∈ [0, 255]N is the image of N = N1 × N2 pixels to recover from a blurred and
noisy observation b ∈ Rm, R : RN → Rm is a linear operator representing a Gaussian
blur, the discrete gradient ∇ : x 7→ (D1x,D2x) includes horizontal and vertical differences
through linear operators D1 : RN → RN and D2 : RN → RN , respectively, its adjoint ∇∗

is the discrete divergence (see, e.g., [13]), and α ∈ ]0,+∞[. A difficulty in this model is
the presence of the non-smooth ℓ1 norm composed with the discrete gradient operator ∇,
which is non-differentiable and its proximity operator has not a closed form.

Note that, by setting f = ∥R · −b∥2/2, g1 = α∥ · ∥1 = g2, and g3 = ι[0,255]N , L1 = D1,

L2 = D2, and L3 = Id, (3.2.55) can be reformulated as min(f+
∑3

i=1 gi◦Li) or equivalently
as (qualification condition holds)

find x ∈ RN such that 0 ∈ ∂f(x) +
3∑

i=1

L∗
i∂gi(Lix), (3.2.56)

which is a particular instance of (3.2.38), in view of [3, Theorem 20.25]. Moreover, for
every τ > 0, Jτ∂f = (Id + τR∗R)−1(Id − τR∗b), for every i ∈ {1, 2, 3}, Jτ(∂gi)−1 = τ(Id −
proxgi/τ )(Id/τ), proxg3/τ = P[0,255]N , and, for i ∈ {1, 2}, proxgi/τ = proxα∥·∥1/τ is the
component-wise soft thresholder, computed in [3, Example 24.34]. Note that (Id+τR∗R)−1

can be computed efficiently via a diagonalization of R using the fast Fourier transform F
[30, Section 4.3]. Altogether, Remark 3.2.11.(2) allows us to write algorithm in (3.2.40)
as Algorithm 3 below, where we set Υ = τ Id, Σ1 = σ1Id, Σ2 = σ2Id, and Σ3 = σ3Id, for
τ > 0, σ1 > 0, σ2 > 0, and σ3 > 0. We denote by R the primal-dual error

R : (x+, u+, x, u) 7→

√
∥(x+, u+)− (x, u)∥2

∥(x, u)∥2
(3.2.57)

and by ε > 0 the convergence tolerance.
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Algorithm 3

1: Fix x0, u1,0, u2,0, and u3,0 in RN , let τ , σ1, σ2, and σ3 be in ]0,+∞[, let (λn)n∈N in [0, 2]
such that

∑
n∈N λn(2− λn) = +∞, and fix r0 > ε > 0.

2: while rn > ε do
3: pn+1 = (Id + τR∗R)−1(xn − τ(D∗

1u1,n +D∗
2u2,n + u3,n +R∗b))

4: xn+1 = (1− λn)xn + λnpn+1

5: q1,n+1 = σ1(Id− proxα∥·∥1/σ1
)(u1,n/σ1 +D1(2pn+1 − xn))

6: q2,n+1 = σ2(Id− proxα∥·∥1/σ2
)(u2,n/σ1 +D2(2pn+1 − xn))

7: q3,n+1 = σ3

(
Id− P[0,255]N

)
(u3,n/σ3 + 2pn+1 − xn)

8:

⌊
for i = 1, 2, 3
ui,n+1 = (1− λn)ui,n + λnqi,n+1

9: rn = R
(
(xn+1, u1,n+1, u2,n+1, u3,n+1), (xn, u1,n, u2,n, u3,n)

)
10: end while
11: return (xn+1, u1,n+1, u2,n+1, u3,n+1)

In this case, (3.2.39) reduces to

τ(σ1∥D1∥2 + σ2∥D2∥2 + σ3) ≤ 1 (3.2.58)

and the closed range condition is trivially satisfied. By using the power iteration [35] with
tolerance 10−9, we obtain ∥D1∥2 = ∥D2∥2 ≈ 3.9998.

Observe that, when σ1 = σ2 = σ3 = σ, Algorithm 3 reduces to the algorithm proposed
in [15] (when στ(∥D1∥2 + ∥D2∥2 + 1) < 1) or [21, Theorem 3.3] (algorithm denoted by
condat), where the case στ(∥D1∥2 + ∥D2∥2 + 1) = 1 is included.

Since in [12, Section 5.1], the critical step-sizes achieve the best performance, we provide
a numerical experiment which compare the efficiency of Algorithm 3 for different values
of the parameters τ, σ1, σ2, and σ3 in the boundary of (3.2.58) and different relaxation
parameters λn. In particular we compare with the case σ1 = σ2 = σ3 = σ (condat),
which turns out to be more efficient than other methods as AFBS [36], MS [9], Condat-Vũ
[21, 42] in this context [12, Section 5.1]. For these comparisons, we consider the test image
x shown in Figure 3.2a of 256×256 pixels (N1 = N2 = 256) inspired in [43, Section 5]. The
operator blur R is set as a Gaussian blur of size 9×9 and standard deviation 4 (applied by
MATLAB function fspecial) and the observation b is obtained by b = Rx + e ∈ Rm1×m2 ,
where m1 = m2 = 256 and e is an additive zero-mean white Gaussian noise with standard
deviation 10−3 (using imnoise function in MATLAB). We generate 20 random realizations
of the random variable e leading to 20 observations (bi)1≤i≤20.

We study the efficiency of Algorithm 3 for different values of τ, σ1, σ2, and σ3 and
relaxation steps λn ≡ λ ∈ {1, 1.5, 1.9}. In order to approximate the best performance
step-sizes in the boundary of (3.2.58), we consider τ ∈ C := {0.10 + 0.05 · n}n=0,...,10

and σ1 = σ2 = σ3 = σ = τ/(1 + ∥D1∥2 + ∥D2∥2) in the case of condat. In the case
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Table 3.1: Averages number of iterations for Algorithm 3 with τ(σ1∥D1∥2+σ2∥D1∥2+σ3) =
1 and condat with tolerance 10−8.

ε = 10−8

Algorithm τ σ1 σ2 λn Av. Time(s) Av. Iter.

Alg. 3

0.2 0.7425 0.4950

1

82.6373 8844
0.2 0.7463 0.4975 82.2817 8827
0.2 0.7493 0.4995 82.5722 8833
0.2 0.7425 0.4950

1.5

63.1338 6766
0.2 0.7463 0.4975 63.0645 6754
0.2 0.7493 0.4995 63.0996 6758
0.2 0.8044 0.4331

1.9

53.9059 5770
0.2 0.8085 0.4353 53.8663 5767
0.2 0.8117 0.4371 53.8022 5761

condat

0.2 - - 1 92.7997 9326
0.2 - - 1.5 67.0886 7131
0.2 - - 1.9 57.8523 6121

of Algorithm 3 we consider σ1 = γ1(1 − γ2)/(τ∥D1∥2), σ2 = (1 − γ1)(1 − γ2)/(τ∥D2∥2),
σ3 = γ2/τ , where (τ, γ1, γ2) ∈ C × {0.01, 0.005, 0.001} × {0.5, 0.55, 0.6, 0.65}.

In Table 3.1 we provide the average number of iterations obtained by applying Algo-
rithm 3 for solving (3.2.55) considering the 20 observations (bi)1≤i≤20 and the best set of
step-sizes found with the procedure above. The tolerance is set as ε = 10−8. We observe
that Algorithm 3 becomes more efficient in iterations as long as the relaxation parameters
are larger. The case λ = 1.9 achieves the tolerance in approximately 35% less iterations
than the case λ = 1. By choosing different parameters σ1, σ2, and σ3, the algorithm
achieves the tolerance in approximately 6% less iterations than condat.

This conclusion is confirmed in Figure 3.1, which shows the performance obtained with
the observation b4. This figure also shows that both algorithms achieve in less iterations
the optimal objective value for higher relaxation parameters, with a slight advantage of
Algorithm 3. Note that, since the algorithms under study has the same structure, the
CPU time by iteration is very similar.

In Figure 3.2 we provide the images reconstructed from observation b4 by using condat

and Algorithm 3 after 300 iterations. The best reconstruction, in terms of objective value
F TV and PSNR (Peak signal-to-noise ratio) is obtained by Algorithm 3.
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Figure 3.1: Comparison of Algorithm 3 with τ(σ1∥D1∥2 + σ2∥D1∥2 + σ3) = 1 and condat

(observation b4).

(a) Original, FTV (x) = 17.8430 (b) Blurry/noisy b4, FTV (b) =
80.5807, PSNR=18.4842

(c) condat , FTV (x300) =
16.3503, PSNR=28.5957.

(d) Alg. 3, FTV (x300) = 16.3473,
PSNR=28.6349.

Figure 3.2: Reconstructed image, after 300 iterations, from blurred and noisy image using
condat and Alg. 3 in their best cases, respectively, cases and λ = 1.9 .
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y Programas from UTFSM through Programa de Incentivos a la Iniciación Cient́ıfica
(PIIC).

3.2.6 Appendix

Proposition 3.2.14. In the context of Problem 3.2.1, set L = Id, let Υ: H → H be
a strongly monotone self adjoint linear bounded operator, set Λ: H × H → H : (x, u) 7→
x−Υu, let V , W , and GΥ,B,A be the operators defined in (3.2.27), (3.2.30), and (3.2.43),
respectively. Then, Λ(Fix (Pran V ◦ JW )) = FixGΥ,B,A.

Proof. The inclusion ⊂ is proved in (3.2.51). Conversely, since Λ∗ : z 7→ (z,−Υz), we have
Λ ◦ Λ∗ = Id + Υ2 and [3, Proposition 3.30 & Example 3.29] yields Pran V = PranΛ∗ =
Λ∗(Id+Υ2)−1Λ. Therefore, if ẑ ∈ FixGΥ,B,A, by setting (x̂, û) := Λ∗(Id+Υ2)−1ẑ, we have
ẑ = Λ(x̂, û) and we deduce from (3.2.50) that

Pran V ◦ JW (x̂, û) = Λ∗(Id + Υ2)−1Λ(JW (x̂, û))

= Λ∗(Id + Υ2)−1GΥ,B,A(Λ(x̂, û))

= Λ∗(Id + Υ2)−1GΥ,B,Aẑ

= Λ∗(Id + Υ2)−1ẑ

= (x̂, û). (3.2.59)

Consequently, (x̂, û) ∈ Fix (Pran V ◦ JW ) and ẑ = Λ(x̂, û) ∈ Λ(Fix (Pran V ◦ JW )).
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[5] R. I. Boţ, E. R. Csetnek, and A. Heinrich, A primal-dual splitting algorithm
for finding zeros of sums of maximal monotone operators, SIAM J. Optim., 23 (2013),
pp. 2011–2036, https://doi.org/10.1137/12088255X.
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[34] B. Martinet, Brève communication. régularisation d’inéquations variationnelles
par approximations successives, ESAIM: Mathematical Modelling and Numerical
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[42] B. C. Vũ, A splitting algorithm for dual monotone inclusions involving cocoercive
operators, Adv. Comput. Math., 38 (2013), pp. 667–681, https://doi.org/10.1007/
s10444-011-9254-8.

[43] Y. Yang, Y. Tang, M. Wen, and T. Zeng, Preconditioned douglas-rachford type
primal-dual method for solving composite monotone inclusion problems with applica-
tions, Inverse Probl. Imaging, 15 (2021), pp. 787–825.

88

https://doi.org/10.1007/s11590-019-01388-y
https://doi.org/10.1109/ICCV.2011.6126441
https://doi.org/10.1137/0314056
https://doi.org/10.1016/0167-2789(92)90242-F
https://doi.org/10.1016/0167-2789(92)90242-F
https://doi.org/10.1090/surv/049
https://doi.org/10.1137/100788100
https://doi.org/10.1007/s10444-011-9254-8
https://doi.org/10.1007/s10444-011-9254-8


Chapter 4

Resolvent of the Parallel
Composition and Proximity
Operator of the Infimal
Postcomposition

4.1 Introduction and Main Results

In this section we aim to calculate the resolvent of parallel composition including non-
standard metrics under mild assumptions. Given a maximally monotone operator A : H →
2H and a linear bounded operator L : H → G, where H and G are real Hilbert spaces, the
parallel composition of A and B, is given by

L▷ A = (LA−1L∗)−1. (4.1.1)

This operation arises in primal-dual composite monotone inclusions and related numerical
methods available in the literature. For instance, Problem 1.1.2 motivates to derive an
explicit computation of the resolvent of (LA−1−L)−1 in view of (1.1.4) and the DRS
(Algorithm1.1.4). In the particular case when A is the subdifferential of a convex function
f : H → ]−∞,+∞] satisfying dual qualification conditions, we have that L ▷ A is the
subdifferential of the infimal postcomposition of f by L, defined by

L▷ f : G → ]−∞,+∞] : u 7→ inf
x∈H
Lx=u

f(x). (4.1.2)

This operation appears naturally when dealing with the dual of composite optimization
problems since we have (L▷f)∗ = f ∗◦L∗ under mild assumptions [1, Proposition 13.24(iv)],
see for instance Problem 2.1.5 and Algorithm 2.1.6. Moreover, it is related with the parallel
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composition via the identities

L▷ (∂f) = (L(∂f ∗)L∗)−1 = (∂(f ∗ ◦ L∗))−1 = ∂(f ∗ ◦ L∗)∗ = ∂(L▷ f), (4.1.3)

where the second equality holds if, e.g., 0 ∈ sri (dom f ∗ − ranL∗) [1, Corollary 16.53].
We present a generalization of [1, Proposition 23.25] providing an explicit computation

of the resolvent of UM∗BM under mild assumptions. Using this result we obtain the fol-
lowing corollary which allows the computation of the resolvent of the parallel composition
L▷A under mild assumptions. Recall that JU

A is defined in [6] and that U † stands for the
Moore-Penrose inverse of U .

Corollary 4.1.1. Let A : H → 2H be a maximally monotone operator, let L : H → G be
a linear bounded operator such that LA−1L∗ is maximally monotone in G. Moreover, let
U : G → G be a self-adjoint strongly monotone linear bounded operator. Then, U(L ▷ A)
is maximally monotone in (G, ⟨· | ·⟩U−1) and the following holds:

1. JU(L▷A) = L(A+ L∗U−1L)−1L∗U−1.

2. Suppose that ranL is closed. Then,

JU(L▷A) = LJL∗U−1L
A (

√
U

−1
L)†

√
U

−1
. (4.1.4)

3. Suppose that ranL∗ = H. Then,

JU(L▷A) = LJ(L∗U−1L)−1A(L
∗U−1L)−1L∗U−1. (4.1.5)

Applying previous results in the optimization context, we obtain the following result
which provides a formula for the proximity operators of f ∗ ◦L∗ and L▷ f and generalizes
[23, Proposition 5.2(iii)] to non-standard metrics and infinite dimensions. Recall that
proxUf is defined in (1.3.8).

Proposition 4.1.2. Let H and G be real Hilbert spaces, let f ∈ Γ0(H), let L : H → G be
a linear bounded operator such that

0 ∈ sri (dom f ∗ − ranL∗), (4.1.6)

and let U : G → G be a strongly monotone self-adjoint linear operator. Define

proxUf,L : G → 2H : u 7→ argmin
x∈H

(
f(x) +

1

2
∥Lx− u∥2U

)
. (4.1.7)

Then, the following hold:

1. domproxUf,L = G.

2. proxU
−1

f∗◦L∗ = Id− UL proxUf,LU
−1.

3. L▷ f = (f ∗ ◦ L∗)∗ ∈ Γ0(H) and proxUL▷f = L proxUf,L.
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4.2 Article: Resolvent of the Parallel Composition

and Proximity Operator of the Infimal Postcom-

position 1

Abstract In this paper we provide the resolvent computation of the infimal postcompo-
sition of a maximally monotone operator by a linear operator under mild assumptions.
Connections with a modification of the warped resolvent are provided. In the context of
convex optimization, we obtain the proximity operator of the infimal postcomposition of
a convex function by a linear operator and we extend full range conditions on the linear
operator to mild qualification conditions. We also introduce a generalization of the prox-
imity operator involving a general linear bounded operator leading to a generalization of
Moreau’s decomposition for composite convex optimization.

4.2.1 Introduction

In this paper we aim at computing the resolvent of the parallel composition of A by L,
defined by

L▷ A = (LA−1L∗)−1, (4.2.1)

where H and G are real Hilbert spaces, A : H → 2H and L : H → G is linear and bounded.
In the case when H = H⊕H for some real Hilbert space H, G = H, A : (x, y) 7→ Bx×Cx
for some set-valued operators B and C defined in H and L : (x, y) 7→ x + y we have
L▷A = B□C [1, Example 25.40], where B□C = (B−1+C−1)−1 is the parallel sum of B
and C, motivating the name of the operation. The parallel composition appears naturally
in composite monotone inclusions. Indeed, if B : G 7→ 2G, the dual inclusion associated to

find x ∈ H such that 0 ∈ Ax+ L∗BLx, (4.2.2)

is
find u ∈ G such that 0 ∈ B−1u+ (−L▷ A)−1u. (4.2.3)

When L∗L = αId or when L∗ has full range, explicit formulas for the resolvent of LA−1L∗

depending on the resolvent of A can be found in [1, Proposition 23.25]. In [13, 25] some
variants and fixed point methods to compute the resolvent are proposed under full range
condition on L∗ and a similar fixed point approach is used in [21] under the maximal
monotonicity of LA−1L∗. This computation is useful in [22] for the equivalence between
the primal-dual [7, 24] and Douglas-Rachford splitting (DRS) [11, 17] algorithms.

In the particular case when A is the subdifferential of a convex function f : H →
]−∞,+∞] satisfying dual qualification conditions, we have that L▷A is the subdifferential

1[4] Luis M. Briceño-Arias and Fernando Roldán. Resolvent of the parallel composition and proximity
operator of the infimal postcomposition, 2021, https://arxiv.org/abs/2109.06771.

91

https://arxiv.org/abs/2109.06771


Chapter 4 Composite Monotone Inclusions in Vector Subspaces

of the infimal postcomposition of f by L, defined by

L▷ f : G → [−∞,+∞] : u 7→ inf
x∈H
Lx=u

f(x). (4.2.4)

This operation appears naturally when dealing with the dual of composite optimization
problems since we have (L▷f)∗ = f ∗◦L∗ under mild assumptions [1, Proposition 13.24(iv)].
Moreover, it is related with the parallel composition via the identities

L▷ (∂f) = (L(∂f ∗)L∗)−1 = (∂(f ∗ ◦ L∗))−1 = ∂(f ∗ ◦ L∗)∗ = ∂(L▷ f), (4.2.5)

where the second equality holds if, e.g., 0 ∈ sri (dom f ∗ − ranL∗) [1, Corollary 16.53].
Therefore, the resolvent of L▷ (∂f) and the proximity operator of L▷ f are related and
they are useful in the derivation of the alternating direction method of multipliers (ADMM)
for solving inf(f + g ◦ L) from DRS, since the former is obtained as an application of the
latter to the Fenchel-Rockafellar dual inf(f ∗ ◦ (−L∗) + g∗) [14] (see also [3, 9, 10, 23,
5]). In this context, the single-valuedness of (∂f + L∗L)−1L∗ is assumed in the proof
of [9, Theorem 4.7], its full domain is supposed in [23, Proposition 5.2], and the strong
monotonicity of (∂f + L∗L) is assumed in [3, 10] in order obtain both properties. It is
worth to notice that some fixed point approaches and algorithms for computing proxf∗◦L∗

are proposed in [12, 18] in the context of sparse recovery in image processing.
In this paper we derive a formula for the resolvent of the parallel composition and

for the proximity operator of the infimal postcomposition in a real Hilbert space with
non-standard metric under mild assumptions. This is obtained from a formula of the re-
solvent of LA−1L∗ via the non-standard metric version of Moreau’s identity in [1, Propo-
sition 23.34(iii)]. Our computation is related with a modification of the warped resolvent
defined in [6] (see [15] for a particular case) and we extend and generalize several re-
sults in the literature as [3, 9, 10, 23, 25]). We also derive a generalization of Moreau’s
decomposition [20] for composite maximally monotone operators and for composite con-
vex optimization under standard assumptions by using a generalization of the proximity
operator.

4.2.2 Notation and preliminaries

Throughout this paper H and G are real Hilbert spaces with the scalar product ⟨· | ·⟩
and associated norm ∥ · ∥. The identity operator on H is denoted by Id. Let A :
H → 2H be a set-valued operator. The domain of A is dom A =

{
x ∈ H

∣∣ Ax ̸= ∅
}
,

the range of A is ran A =
{
u ∈ H

∣∣ (∃x ∈ H) u ∈ Ax
}
, the graph of A is graA ={

(x, u) ∈ H ×H
∣∣ u ∈ Ax

}
, the set of zeros of A is zerA =

{
x ∈ H

∣∣ 0 ∈ Ax
}
, the inverse

of A is A−1 : u 7→
{
x ∈ H

∣∣ u ∈ Ax
}
, and its resolvent is JA = (Id + A)−1. For every

D ⊂ H, A |D is the restriction of A to D, which satisfies domA |D= domA ∩D and, for
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every x ∈ D, A |D x = Ax. The operator A is injective on D if

(∀x ∈ H)(∀y ∈ H) Ax ∩ Ay ∩D ̸= ∅ ⇒ x = y, (4.2.6)

and A is injective if it is injective on H. It is clear that injectivity of A on D implies its
injectivity on D′ when D′ ⊂ D. Moreover, the operator A is monotone if

(∀(x, u) ∈ graA)(∀(y, v) ∈ graA) ⟨x− y | u− v⟩ ≥ 0, (4.2.7)

A is strongly monotone if there exists α > 0 such that

(∀(x, u) ∈ graA)(∀(y, v) ∈ graA) ⟨x− y | u− v⟩ ≥ α∥x− y∥2, (4.2.8)

and A is maximally monotone if it is monotone and, for every (x, u) ∈ H ×H,

(x, u) ∈ graA ⇔ (∀(y, v) ∈ graA) ⟨x− y | u− v⟩ ≥ 0. (4.2.9)

For every strongly monotone self-adjoint linear bounded operator U : H → G, we denote
⟨· | ·⟩U = ⟨· | U ·⟩ and ∥ · ∥U =

√
⟨· | ·⟩U , which define an inner product and the associated

norm in H, respectively.
We denote by Γ0(H) the class of proper lower semicontinuous convex functions f : H →

]−∞,+∞]. Let f ∈ Γ0(H). The Fenchel conjugate of f is defined by f ∗ : u 7→ supx∈H(⟨x | u⟩−
f(x)), f ∗ ∈ Γ0(H), the subdifferential of f is the maximally monotone operator

∂f : x 7→
{
u ∈ H

∣∣ (∀y ∈ H) f(x) + ⟨y − x | u⟩ ≤ f(y)
}
, (4.2.10)

(∂f)−1 = ∂f ∗, the set of minimizers of f is denoted by argminx∈H f(x), and we have
that zer (∂f) = argminx∈H f(x). Given a strongly monotone self-adjoint linear operator
U : H → H, we denote by

proxUf : x 7→ argmin
y∈H

(
f(y) +

1

2
∥x− y∥2U

)
, (4.2.11)

and by proxf = proxIdf . We have [1, Proposition 24.24] (see also [8, Section 3])

proxUf = U− 1
2prox

f◦U− 1
2
U

1
2 = JU−1∂f (4.2.12)

and it is single valued since the objective function in (4.2.11) is strongly convex. Moreover,
it follows from [1, Proposition 23.34(iii)] that

JUA + UJU−1A−1U−1 = Id, (4.2.13)

and, in the case of convex functions, [1, Proposition 24.24] yields

proxUf = Id− U−1 proxU
−1

f∗ U = U−1 (Id− proxU
−1

f∗ )U. (4.2.14)
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Given a non-empty set C ⊂ H, we denote by spanC the closed span of C, by cone C its
conical hull. Let C be a non-empty closed convex subset of H. We denote by sriC ={
x ∈ C

∣∣ cone (C − x) = span (C − x)
}

its strong relative interior, by ιC ∈ Γ0(H) the
indicator function of C, which takes the value 0 in C and +∞ otherwise, by PU

C = proxUιC
the projection onto C with respect to (H, ⟨· | ·⟩U), and we denote PC = P Id

C . It follows
from (4.2.12) that

PU
C = U− 1

2prox
ιC◦U− 1

2
U

1
2 = U− 1

2P
U

1
2C

U
1
2 . (4.2.15)

Given a linear bounded operator L : H → G, we denote its adjoint by L∗ : G → H, its
kernel (or null space) by kerL, its range by ranL, and, if ranL is closed, its Moore-Penrose
inverse by

L† : G → H : y 7→ PCy0, (4.2.16)

where Cy = {x ∈ H | L∗Lx = L∗y}. If L∗L is invertible, we have [1, Example 3.29]

L† = (L∗L)−1L∗. (4.2.17)

For definitions and properties of monotone operators, nonexpansive mappings, and convex
analysis, the reader is referred to [1].

We now introduce a modification of the warped resolvent introduced in [6] (see also
[15] for a particular case and applications). Let A : H → 2H be a set-valued operator and
let K : H → H. The warped resolvent of A with kernel K is defined by JK

A = (K+A)−1K.
In the case when K is linear and invertible, we have

JK
A = (K + A)−1K = (K(Id +K−1A))−1K = JK−1A, (4.2.18)

which has full domain and it is single valued ifK−1A is maximally monotone. The following
result characterizes the full domain and single-valuedness of JK

A in a general context.

Proposition 4.2.1. Let A : H → 2H be a set-valued operator and let K : H → H. Then
the following holds.

1. dom JK
A = H ⇔ ranK ⊂ ran (K + A).

2. JK
A is at most single-valued ⇔ K + A is injective on ranK.

Proof. 1: For every x ∈ H we have

x ∈ dom JK
A ⇔ (∃u ∈ H) u ∈ (K + A)−1Kx

⇔ (∃u ∈ H) Kx ∈ (K + A)u

⇔ Kx ∈ ran (K + A), (4.2.19)

and the result follows. 2: First assume that JK
A is at most single valued. In view of (4.2.6),

let x and y inH and suppose that there exists z ∈ H such thatKz ∈ (Kx+Ax)∩(Ky+Ay).
Then {x} ∪ {y} ⊂ JK

A z and single-valuedness of JK
A implies x = y, which yields the

injectivity on ranK. Conversely, let z ∈ dom JK
A and let x and y in JK

A z. Then, Kz ∈
(Kx+ Ax) ∩ (Ky + Ay) ∩ ranK and injectivity on ranK implies x = y.
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In [6, Definition 1.1] it is assumed that K + A is injective in the whole space in order
to guarantee that JK

A is single-valued, but this is a stronger assumption in general, as the
following example illustrates.

Example 4.2.2. Let α > 0, set H = R, set K : x 7→ mid{−1, x, 1} be the median of real
values x, −1, and 1, and set A = αK. Note that A and K are maximally monotone,
single valued, and ranK = [−1, 1] ⊂ [−1 − α, 1 + α] = ran (K + A). Moreover, observe
that K +A = (1+α)mid{−1, x, 1} is injective on ranK but it is not injective on R, since
(K + A)1 = (K + A)2 = 1 + α.

The warped proximity operator of f with kernel K is defined by

proxKf = JK
∂f = (K + ∂f)−1K (4.2.20)

and note that it coincides with (4.2.12) when K is strongly monotone, self-adjoint, linear,
and bounded, in view of (4.2.18).

4.2.3 Resolvent of parallel composition

The following result is a generalization of [1, Proposition 23.25] and provides an explicit
computation of the resolvent of UM∗BM under mild assumptions.

Theorem 4.2.3. Let H and G be real Hilbert spaces, let B : H → 2H be a maximally
monotone operator, let M : G → H be a linear bounded operator such that M∗BM is
maximally monotone in G, and let U : G → G be a µ−strongly monotone self-adjoint
linear operator for some µ > 0. Then UM∗BM is maximally monotone in (G, ⟨· | ·⟩U−1)
and the following assertions hold:

1. ranM ⊂ dom (MUM∗ +B−1)−1 and

JUM∗BM = Id− UM∗(MUM∗ +B−1)−1M. (4.2.21)

2. ran (MUM∗) ⊂ ran (MUM∗ +B−1).

3. (MUM∗ +B−1) |ranM is injective.

4. Suppose that ranM is closed. Then

JUM∗BM = Id− UM∗JMUM∗

B−1 (
√
UM∗)†

√
U

−1
. (4.2.22)

5. Suppose that ranM = H. Then

JUM∗BM = Id− UM∗J(MUM∗)−1B−1(MUM∗)−1M (4.2.23)

= PU−1

kerM + UM∗(MUM∗)−1JMUM∗BM. (4.2.24)
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Proof. The maximal monotonicity of UM∗BM follows from [1, Proposition 20.24]. 1: For
every x and p in G, we have

p = JUM∗BMx ⇔ x− p ∈ UM∗BMp (4.2.25)

⇔ (∃v ∈ H)

{
x− p = UM∗v

v ∈ BMp

⇔ (∃v ∈ H)

{
p = x− UM∗v

Mp ∈ B−1v

⇔ (∃v ∈ H)

{
p = x− UM∗v

Mx ∈ MUM∗v +B−1v.

⇔ (∃v ∈ (MUM∗ +B−1)−1Mx) p = x− UM∗v, (4.2.26)

and the result follows. 2: It follows from 1 that

ran (MUM∗) ⊂ ranM ⊂ dom (MUM∗ +B−1)−1 = ran (MUM∗ +B−1). (4.2.27)

3: Let x and y in ranM be such that there exists u ∈ (MUM∗x + B−1x) ∩ (MUM∗y +
B−1y). Then, u−MUM∗x ∈ B−1x, u−MUM∗y ∈ B−1y, and the monotonicity of B−1

yields

0 ≤ ⟨−MUM∗(x− y) | x− y⟩
= −⟨UM∗(x− y) | M∗(x− y)⟩
≤ −µ∥M∗(x− y)∥2, (4.2.28)

which implies x − y ∈ kerM∗. Since x − y ∈ ranM ⊂ ranM , it follows from [1,
Fact 2.25(iv)] that x− y ∈ kerM∗ ∩ ranM = {0}, which yields the result.

4: Denote by GU the Hilbert space G endowed with the scalar product ⟨· | ·⟩U−1 .
Note that M∗U = UM∗U−1, where M∗U and M∗ are the adjoints of M in GU and
G, respectively. Moreover, [1, Fact 2.25(iv)] and the closedness of ranM on GU yield
(kerM)⊥U = ranM∗U = ran (UM∗U−1) = ran (UM∗), where ⊥U stands for the orthogo-
nal complement in GU . Hence,

GU = kerM ⊕ ran (UM∗) (4.2.29)

is an orthogonal decomposition of GU . Hence, we have from [1, Proposition 24.24(ii) &
Proposition 3.30(iii)] that

PU−1

kerM = proxU
−1

ιkerM

=
√
UproxιkerM◦

√
U

√
U

−1

=
√
UPker(M

√
U)

√
U

−1

= Id− UM∗(
√
UM∗)†

√
U

−1
, (4.2.30)
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and
PU−1

ran (UM∗) = UM∗(
√
UM∗)†

√
U

−1
, (4.2.31)

where (
√
UM∗)† is the Moore-Penrose inverse of

√
UM∗ : H → G. Therefore, 1 asserts

that

JUM∗BM = Id− UM∗(B−1 +MUM∗)−1M

= Id− UM∗(B−1 +MUM∗)−1MPU−1

ran (UM∗)

= Id− UM∗(B−1 +MUM∗)−1MUM∗(
√
UM∗)†

√
U

−1

= Id− UM∗JMUM∗

B−1 (
√
UM∗)†

√
U

−1
, (4.2.32)

where in the last equality JMUM∗

B−1 has full domain in view of 2 and Proposition 4.2.1(1).
5: Since ranM = H is closed and U is µ−strongly monotone for some µ > 0, MUM∗

is strongly monotone and, thus, invertible. Indeed, for every v ∈ H, [1, Fact 2.26] implies
that there exists α > 0 such that

⟨MUM∗v | v⟩ = ⟨UM∗v | M∗v⟩ ≥ µ∥M∗v∥2 ≥ µα2∥v∥2. (4.2.33)

Hence, since (
√
UM∗)∗(

√
UM∗) = MUM∗, (4.2.23) follows from 4, (4.2.18), and (4.2.17).

Moreover, since (4.2.30) and (4.2.17) yield PU−1

kerM = Id − UM∗(MUM∗)−1M , (4.2.24)
follows from (4.2.23) and (4.2.13).

Remark 4.2.4. 1. Note that Theorem 4.2.3(1) provides the existence of zeros of the
monotone operator MUM∗+B−1 from the maximal monotonicity of M∗BM , which
is guaranteed, e.g., if cone (ranM − domB) = span (ranM − domB) [1, Corol-
lary 25.6] (see [2] for a weaker assumption involving the domain of the Fitzpatrick
function).

2. Note that, from Theorem 4.2.3(1), M∗(MUM∗+B−1)−1M : G → G is single valued,
even if (MUM∗+B−1)−1 can be a set-valued mapping. Indeed, for every x ∈ G, let v
and w in (MUM∗+B−1)−1Mx. Then, M(x−UM∗v) ∈ B−1v and M(x−UM∗w) ∈
B−1w and the monotonicity of B−1 yields

0 ≤ ⟨−MU(M∗v −M∗w) | v − w⟩ = −∥M∗v −M∗w∥2U , (4.2.34)

which implies M∗v = M∗w. This computation is consistent with the fact that the
resolvent of the monotone operator UM∗BM is single-valued.

3. Observe that Theorem 4.2.3(2) and Proposition 4.2.1(1) imply that dom JMUM∗

B−1 =
H. On the other hand, the single-valuedness of JMUM∗

B−1 is not guaranteed since
MUM∗+B−1 is not necessarily injective on ran (MUM∗) (see Proposition 4.2.1(2)).
Indeed, suppose that kerM∗ ̸= {0} and that B−1 = NC, where C is the closed ball
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centered at 0 with radius 1. By taking x = 0 and y ∈ kerM∗ ∖ {0} ∩ intC, we
have {0} = NCx∩NCy = (MUM∗x+B−1x)∩ (MUM∗y+B−1y), 0 ∈ ranMUM∗,
and x ̸= y. However, when ranM is closed, it follows from Theorem 4.2.3(3) and
ran (

√
UM∗)† = ran (M

√
U) = ranM [1, Proposition 3.30(v)] that JMUM∗

B−1 (
√
UM∗)†

is single valued.

4. In the particular case when U = Id, Theorem 4.2.3(5) coincides with [1, Propo-
sition 23.25]. On the other hand, when M = Id and H = G, we recover from
Theorem 4.2.3(5) the Moreau’s decomposition with non-standard metric in [1, Propo-
sition 23.34(iii)] recalled in (4.2.13).

We conclude this section with the computation of the resolvent of the parallel compo-
sition L▷ A.

Corollary 4.2.5. Let A : H → 2H be a maximally monotone operator, let L : H → G be
a linear bounded operator such that LA−1L∗ is maximally monotone in G. Moreover, let
U : G → G be a self-adjoint strongly monotone linear bounded operator. Then, U(L ▷ A)
is maximally monotone in (G, ⟨· | ·⟩U−1) and the following holds:

1. JU(L▷A) = L(A+ L∗U−1L)−1L∗U−1.

2. Suppose that ranL is closed. Then,

JU(L▷A) = LJL∗U−1L
A (

√
U

−1
L)†

√
U

−1
. (4.2.35)

3. Suppose that ranL∗ = H. Then,

JU(L▷A) = LJ(L∗U−1L)−1A(L
∗U−1L)−1L∗U−1. (4.2.36)

Proof. Since L▷A = (LA−1L∗)−1, the maximal monotonicity of U(L▷A) follows from [1,
Propositions 20.22 & 20.24]. 1: By applying Theorem 4.2.3(1) to B = A−1 and M = L∗,
it follows from (4.2.13) that

JU(L▷A) = Id− UJU−1LA−1L∗U−1

= Id− U(Id− U−1L(A+ L∗U−1L)−1L∗)U−1

= L(A+ L∗U−1L)−1L∗U−1. (4.2.37)

2: By applying Theorem 4.2.3(4) to B = A−1 and M = L∗, we obtain

JU(L▷A) = Id− UJU−1LA−1L∗U−1

= Id− U
(
Id− U−1LJL∗U−1L

A (
√
U

−1
L)†

√
U
)
U−1

= LJL∗U−1L
A (

√
U

−1
L)†

√
U

−1
. (4.2.38)

3: As in the proof of Theorem 4.2.3(4), L∗U−1L is strongly monotone and, hence, invert-
ible, and the result follows from 2, (4.2.18), and (4.2.17).
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4.2.4 Proximity operator of the infimal postcomposition

For every f ∈ Γ0(H), every linear bounded operator L : H → G, and every strongly
monotone self-adjoint linear bounded operator U : G → G, define

proxUf,L : G → 2H : u 7→ argmin
x∈H

(
f(x) +

1

2
∥Lx− u∥2U

)
. (4.2.39)

Note that [1, Theorem 16.3 & Theorem 16.47(i)] yield

(∀u ∈ G)(∀x ∈ H) x ∈ proxUf,Lu ⇔ 0 ∈ ∂f(x) + L∗U(Lx− u)

⇔ x ∈ (∂f + L∗UL)−1L∗Uu. (4.2.40)

When L = Id, we have proxUf,Id = proxUf and it is single valued with full domain. In [16]
an extension of definition of the classical proximity operator is studied by considering a
Bregman distance instead of ∥ · ∥2U , under the assumption of uniqueness of the solution
to the optimization problem in (4.2.39). In our context, the single-valuedness of proxUf,L
is not needed. The following result provides some properties of proxUf,L in more general
contexts.

Proposition 4.2.6. Let f ∈ Γ0(H), let L : H → G be a linear bounded operator, and
let U : G → G be a µ−strongly monotone self-adjoint linear bounded operator. Then, the
following hold:

1. For every u ∈ domproxUf,L, L(prox
U
f,Lu), and P(kerL)⊥(prox

U
f,Lu) are singletons.

2. Suppose that kerL = {0}. Then, for every u ∈ domproxUf,L, prox
U
f,Lu is a singleton.

3. Suppose that ranL is closed. Then

(∀u ∈ domproxUf,L) proxUf,Lu = proxL
∗UL

f (
√
UL)†

√
Uu. (4.2.41)

4. Suppose that ranL∗ = H. Then proxUf,L is single valued, domproxUf,L = G, and

(∀u ∈ G) proxUf,Lu =
{
proxL

∗UL
f (L∗UL)−1L∗Uu

}
. (4.2.42)

Proof. 1: Let x1 and x2 in proxUf,Lu. It follows from (4.2.40) applied to x1 and x2, the
monotonicity of ∂f , and strong monotonicity of U that

0 ≤ ⟨−L∗UL(x1 − x2) | x1 − x2⟩
= −⟨UL(x1 − x2) | L(x1 − x2)⟩
≤ −µ∥L(x1 − x2)∥2. (4.2.43)
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Therefore, L(x1 − x2) = 0 which leads to x1 − x2 ∈ kerL and, hence, P(kerL)⊥x1 =
P(kerL)⊥x2.

2: In this case (kerL)⊥ = H, which yields P(kerL)⊥ = Id and the result follows from 1.
3: It follows from (4.2.40), the orthogonal decomposition in (G, ⟨· | ·⟩U−1) in (4.2.29)

and (4.2.31) with M = L∗ that, for every u ∈ G and x ∈ H,

x ∈ proxUf,Lu ⇔ x ∈ (∂f + L∗UL)−1L∗PU−1

ran (UL)Uu

⇔ x ∈ (∂f + L∗UL)−1L∗(UL(
√
UL)†

√
U

−1)
Uu

⇔ x ∈ proxL
∗UL

f

(
(
√
UL)†

√
Uu
)
, (4.2.44)

where the last equivalence follows from (4.2.20).
4: Note that ranL∗ = H yields, for every x ∈ G, ⟨L∗ULx | x⟩ ≥ µ∥Lx∥2 ≥ µα2∥x∥2,

where the existence of α > 0 is guaranteed by [1, Fact 2.26]. Therefore, L∗UL is
strongly monotone and, hence, invertible. Hence, the result follows from 3 and (

√
UL)† =

(L∗UL)−1L∗
√
U in view of (4.2.17).

Note that in Proposition 4.2.6(2), proxUf,Lu may be empty for some u ∈ G, as the
following examples illustrate.

Example 4.2.7. Suppose that U = Id, that ranL is not closed, set f = 0, and let
u ∈ ranL \ ranL. Then, infx∈H ∥Lx − u∥ = 0 but the minimum is not attained. Ob-
serve that, since f ∗ = ι{0}, we have dom f ∗ = {0} which yields cone (dom f ∗ − ranL∗) =
cone (ranL∗) = ranL∗ ̸= ranL∗ = span ranL∗ and, thus, 0 /∈ sri (dom f ∗ − ranL∗).

Example 4.2.8. Suppose that H = R2, G = R, f : (x, y) 7→ exp(y), and L : (x, y) 7→ x.
Then L∗ : z 7→ (z, 0), ranL∗ = R× {0}, and f ∗ : (u, v) 7→ ι{0}(u) + exp∗(v), where

exp∗ : v 7→


v(ln v − 1), if v > 0;

0, if v = 0;

+∞, if v < 0.

(4.2.45)

Then, dom f ∗ = {0} × [0,+∞[ and cone (dom f ∗ − ranL∗) = R × [0,+∞[ ̸= R2 =
span (dom f ∗ − ranL∗), which yields 0 /∈ sri (dom f ∗ − ranL∗).

The following result provides sufficient conditions ensuring full domain of proxUf,L. This
is a a consequence of Theorem 4.2.3 in the optimization context and we connect the
existence result with the computation of the proximity operators of f ∗◦L∗ and L▷f . Our
result generalizes [23, Proposition 5.2(iii)] to non-standard metrics and infinite dimensions.

Proposition 4.2.9. Let H and G be real Hilbert spaces, let f ∈ Γ0(H), let L : H → G be
a linear bounded operator such that

0 ∈ sri (dom f ∗ − ranL∗), (4.2.46)
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and let U : G → G be a strongly monotone self-adjoint linear operator. Then, the following
hold:

1. domproxUf,L = G.

2. proxU
−1

f∗◦L∗ = Id− UL proxUf,LU
−1.

3. L▷ f = (f ∗ ◦ L∗)∗ ∈ Γ0(H) and proxUL▷f = L proxUf,L.

Proof. 1: Since 0 ∈ sri (dom f ∗ − ranL∗), [1, Corollary 16.53(i)] yields ∂(f ∗ ◦ L∗) =
L(∂f ∗)L∗, which is maximally monotone in H because f ∗◦L∗ ∈ Γ0(H) [1, Theorem 20.25].
Hence, by applying Theorem 4.2.3(1) to B = ∂f ∗ and M = L∗, it follows from (4.2.40)
that

(∀x ∈ H) ∅ ̸= ((∂f ∗)−1 + L∗UL)−1L∗Ux = (∂f + L∗UL)−1L∗Ux

= proxUf,Lx. (4.2.47)

2: We deduce from (4.2.12), Theorem 4.2.3(1), and (4.2.47) that

proxU
−1

f∗◦L∗ = JU∂(f∗◦L∗) = JUL(∂f∗)L∗ = Id−UL((∂f ∗)−1+L∗UL)−1L∗ = Id−UL proxUf,LU
−1.

3: Since f ∗ ◦ L∗ ∈ Γ0(H), (4.2.46) and [1, Corollary 15.28] yield L▷ f = (f ∗ ◦ L∗)∗ ∈
Γ0(H). Hence, it follows from (4.2.14) and 2 that

proxUL▷f = Id− U−1 proxU
−1

f∗◦L∗ U

= Id− U−1 (Id− UL proxUf,LU
−1)U (4.2.48)

= L proxUf,L (4.2.49)

and the proof is complete.

Remark 4.2.10. 1. In the case when U = µId, the existence of solutions to (4.2.39)
is assumed in [23, Proposition 5.2(iii)] and its uniqueness is supposed in [9, Theo-
rem 4.7]. On the other hand, the strong monotonicity of (L∗L + ∂f) is assumed in
[3, 10] in order to guarantee the existence and uniqueness of solutions to the opti-
mization problem in (4.2.39). Previous approaches are needed in order to guarantee
that sequences of ADMM are well defined. Proposition 4.2.9(1) is more general,
since it is obtained from Theorem 4.2.9 and the maximal monotonicity of L(∂f ∗)L∗,
which is obtained from the qualification condition 0 ∈ sri (dom f ∗ − ranL∗) and
f ∗ ◦ L∗ ∈ Γ0(H) in view of [1, Corollary 16.53(i) & Theorem 20.25].

2. In [12, 18] fixed point approaches are used in order to compute proxf◦L in the context
of the sparse recovery in image processing. This approach leads to sub-iterations in
optimization algorithms needing to compute proxf◦L. Our computation is direct once
proxUf,L is easily computable.
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3. Note that Proposition 4.2.9(1) yields

proxU
−1

f∗◦L∗ + UL proxUf,LU
−1 = Id. (4.2.50)

In the case when L = Id, since proxUf,Id = proxUf , (4.2.50) reduces to [1, Proposi-
tion 24.24(ii)], which is a non-standard metric version of Moreau’s decomposition
[20] first derived for mutually polar cones [19].

Acknowledgments

The first author thanks the support of ANID under grants FONDECYT 1190871, pro-
grama de financiamento basal of the Center of Mathematical Modelling (CMM) of the
Universidad de Chile, and grant Redes 180032. The second author thanks the support of
ANID-Subdirección de Capital Humano/Doctorado Nacional/2018-21181024 and of the
Dirección de Postgrado y Programas from UTFSM through Programa de Incentivos a la
Iniciación Cient́ıfica (PIIC).

Bibliography

[1] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone
Operator Theory in Hilbert Spaces, CMS Books in Mathematics/Ouvrages de
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Preface to Part II

In the second part we aim at solving separately the cases B3 = 0 and V = H in Prob-
lem 1.1.9.

In particular, in Chapter 5 we consider the case B3 = 0 and we provide a splitting
algorithm which fully exploits the structure of the problem, generalizing some methods
in the literature. Also, we derive a splitting method for solving primal-dual monotone
inclusions including normal cones, Lipschitzian-monotone operators and cocoercive oper-
ators. We also derive an algorithm for solving convex composite optimization problems
under vector subspace constraints and we implement it in a TV-regularized least-squares
problems with constraints.

In Chapter 6 we derive a fully split method for solving Problem 1.1.9 in the case
V = H, which takes advantage of the intrinsic properties of the operators. We also derive
an algorithm for solving optimization problems involving convex in Gâteaux differentiable
functions, linear compositions, and Gâteaux differentiable nonlinear constrains. Finally,
we provide numerical experiments which illustrate the efficiency of that method.
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Chapter 5

Forward-Partial
Inverse-Half-Forward Splitting
Algorithm for Monotone Inclusions

5.1 Introduction and Main Results

In this chapter we aim at solving numerically the following problem.

Problem 5.1.1. Let H be a real Hilbert space and let V be a closed vector subspace of
H. Let A : H → 2H be a maximally monotone operator, let B2 : H → H be a monotone
and L-Lipschitzian operator for some L ∈ ]0,+∞[, and let B : H → H be a β-cocoercive
operator for some β ∈ ]0,+∞[. The problem is to

find x ∈ H such that 0 ∈ Ax+Bx+B2x+NV x, (5.1.1)

under the assumption that its solutions set Z is nonempty.

Problem 5.1.1 models a wide class of problems in engineering including mechanical
problems [35, 37, 38], differential inclusions [2, 48], game theory [1, 14], restoration and
denoising in image processing [20, 21, 28], traffic theory [9, 34, 36], among others.

The following is our main algorithm from this section, which allows to solve numerically
Problem 5.1.1 in view of Theorem 5.1.3 below.

Algorithm 5.1.2. In the context of Problem 5.1.1, let (x0, y0) ∈ V ×V ⊥, let γ ∈ ]0,+∞[,
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and let (λn)n∈N be a sequence in ]0,+∞[. Consider the recurrence

for n = 1, 2, . . .

find (pn, qn) ∈ H2 such that xn + γyn − λnγPV (B +B2)xn = pn + γqn

and
PV qn
λn

+ PV ⊥qn ∈ A

(
PV pn +

PV ⊥pn
λn

)
,

xn+1 = PV pn + λnγPV (B2xn −B2PV pn),

yn+1 = PV ⊥qn.

(5.1.2)

Note that (5.1.2) involves only one activation of B, two of B2, and three projections
onto V at each iteration. Now, we present the convergence result of Algorithm 5.1.2.

Theorem 5.1.3. In the context of Problem 5.1.1, set

χ =
4β

1 +
√

1 + 16β2L2
∈
]
0,min

{
2β,

1

L

}[
, (5.1.3)

let γ ∈ ]0,+∞[, and let (λn)n∈N be a sequence in [ε, χ/γ − ε] for some ε ∈ ]0, χ/(2γ)[.
Moreover, let (x0, y0) ∈ V ×V ⊥ and let (xn)n∈N and (yn)n∈N be the sequences generated by
Algorithm 5.1.2. Then (xn)n∈N and (yn)n∈N are sequences in V and V ⊥, respectively, and
there exist x ∈ Z and y ∈ V ⊥ ∩ (Ax+ PV (B +B2)x) such that xn ⇀ x and yn ⇀ y.

The inclusion in (5.1.2) is not always easy to solve. Hence, by an adequate choosing
of the sequence (λn)n∈N, we derive the following corollary in which this inclusion can be
explicitly computed in terms of the resolvent of A.

Corollary 5.1.4. In the context of Problem 5.1.1, let (x0, y0) ∈ V ×V ⊥, let χ ∈ ]0,+∞[ be
the constant defined in (5.1.3), let γ ∈ ]0, χ[, and let (xn)n∈N and (yn)n∈N be the sequences
generated by the recurrence

for n = 1, 2, . . .

pn = JγA
(
xn + γyn − γPV (B +B2)xn

)
rn = PV pn

xn+1 = rn + γPV (B2xn −B2rn)

yn+1 = yn −
pn − rn

γ
.

(5.1.4)

Then, there exist x ∈ Z and y ∈ V ⊥ ∩ (Ax+PV (B+B2)x) such that xn ⇀ x and yn ⇀ y.

Note that, in the case when B = 0, the recurrence in (5.1.4) reduces to FPF (Algo-
rithm 1.1.12) [11], in that case we can take β → ∞ which yields χ → 1/L. On the other
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hand, when B2 = 0, taking L → 0 we obtain χ → 2β and (5.1.4) reduces to FPS (Algo-
rithm 1.1.11) [10]. Moreover, when V = H, (5.1.4) reduces to FBHF (Algorithm 1.1.13)
[15].

In this section, we also provide a method for solving numerically the following primal-
dual composite inclusion.

Problem 5.1.5. Let H be a real Hilbert space, let V be a closed vector subspace of H,
let A : H → 2H be maximally monotone, let M : H → H be monotone and µ-Lipschitzian,
for some µ ∈ ]0,+∞[, let C : H → H be ζ-cocoercive, for some ζ ∈ ]0,+∞[, and let m
be a strictly positive integer. For every i ∈ {1, . . . ,m}, let Gi be a real Hilbert space, let
Bi : Gi → 2Gi be maximally monotone, let Ni : Gi → 2Gi be monotone and such that N−1

i

is νi-Lipschitzian, for some νi ∈ ]0,+∞[, let Di be maximally monotone and δi-strongly
monotone, for some δi ∈ ]0,+∞[, and let Li : H → Gi be a nonzero bounded linear operator.
The problem is to

find x ∈ H, u1 ∈ G1, . . . , um ∈ Gm such that
0 ∈ Ax+Mx+ Cx+

∑m
i=1 L

∗
i ui +NVx

0 ∈
(
B−1
1 + N−1

1 + D−1
1

)
u1 − L1x

...

0 ∈
(
B−1
m + N−1

m + D−1
m

)
um − Lmx,

(5.1.5)

under the assumption that the solution set Z to (5.1.5) is nonempty.

The following proposition is consequence of previous methods and provides an algo-
rithm for solving Problem 5.1.5.

Proposition 5.1.6. Consider the framework of Problem 5.1.5 and set

L = max{µ, ν1, . . . , νm}+

√√√√ m∑
i=1

∥Li∥2 and β = min{ζ, δ1, . . . , δm}. (5.1.6)

Let x0 ∈ V, let y0 ∈ V⊤, for every i ∈ {1, . . . ,m}, let ui,0 ∈ Gi, set γ ∈ ]0, χ[, where χ is
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defined in (5.2.12), and consider the routine

for n = 1, 2, . . .

pn = JγA

(
xn + γyn − γPV

(
(M+ C)xn +

m∑
i=1

L∗i ui,n

))
qn = PVpn
for i = 1, . . . ,m

ri,n = JγB−1
i

(
ui,n − γ

(
(N−1

i + D−1
i )ui,n − Lixn

))
ui,n+1 = ri,n − γ

(
N−1

i ri,n − N−1
i ui,n − Li(qn − xn)

)
xn+1 = qn − γPV

(
Mqn −Mxn +

m∑
i=1

L∗i (ri,n − ui,n)

)
yn+1 = yn −

pn − qn
γ

.

(5.1.7)

Then, (xn)n∈N is a sequence in V and there exists (x, u1, . . . , um) ∈ Z such that xn ⇀ x
and, for every i ∈ {1, . . . ,m}, ui,n ⇀ ui.

Additionally, by applying the method in (5.1.7) in the optimization context, under
adequate qualification condition, we obtain a method for solving the following optimization
problem

min
x∈V

(
f(x) + h(x) +

m∑
i=1

(gi□ ℓi)(Lix)

)
, (5.1.8)

where f ∈ Γ0(H), h : H → R is convex differentiable with ζ−1-Lipschitzian gradient, for
every i ∈ {1, . . . ,m}, ℓi ∈ Γ0(Gi) is νi-strongly convex and gi ∈ Γ0(Gi).

Finally we implement our method in the context of TV-regularized least-square prob-
lems with constraints and we compare its performance with previous methods in the
literature.

5.2 Article: Forward-Partial Inverse-Half-Forward Split-

ting Algorithm for Solving Monotone Inclusions1

Abstract In this paper we provide a splitting algorithm for solving coupled monotone
inclusions in a real Hilbert space involving the sum of a normal cone to a vector subspace,

1[12] Luis M. Briceño-Arias, Jinjian Chen, Fernando Roldán, and Yuchao Tang. Forward-partial
inverse-half-forward splitting algorithm for solving monotone inclusions, 2021, https://arxiv.org/abs/
2104.01516.
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a maximally monotone, a monotone-Lipschitzian, and a cocoercive operator. The pro-
posed method takes advantage of the intrinsic properties of each operator and generalizes
the method of partial inverses and the forward-backward-half forward splitting, among
other methods. At each iteration, our algorithm needs two computations of the Lips-
chitzian operator while the cocoercive operator is activated only once. By using product
space techniques, we derive a method for solving a composite monotone primal-dual in-
clusions including linear operators and we apply it to solve constrained composite convex
optimization problems. Finally, we apply our algorithm to a constrained total variation
least-squares problem and we compare its performance with efficient methods in the lit-
erature.

5.2.1 Introduction

In this paper we study the numerical resolution of the following inclusion problem. The
normal cone to V is denoted by NV .

Problem 5.2.1. Let H be a real Hilbert space and let V be a closed vector subspace of
H. Let A : H → 2H be a maximally monotone operator, let B : H → H be a monotone
and L-Lipschitzian operator for some L ∈ ]0,+∞[, and let C : H → H be a β-cocoercive
operator for some β ∈ ]0,+∞[. The problem is to

find x ∈ H such that 0 ∈ Ax+Bx+ Cx+NV x, (5.2.1)

under the assumption that its solutions set Z is nonempty.

Problem 5.2.1 models a wide class of problems in engineering including mechanical
problems [35, 37, 38], differential inclusions [2, 48], game theory [1, 14], restoration and
denoising in image processing [20, 21, 28], traffic theory [9, 34, 36], among others.

In the case when V = H and the resolvent of B is available, Problem 5.2.1 can be
solved by the algorithms in [29, 30] and, if B is linear, by the algorithm in [41]. Moreover,
if the resolvent of B is difficult to compute, Problem 5.2.1 can be solved by the forward-
backward-half forward algorithm (FBHF) proposed in [11]. FBHF implement explicit
activations of B and C and generalizes the classical forward-backward splitting [42] and
Tseng’s splitting [52] when B = 0 and C = 0, respectively.

In the case when V ̸= H, a splitting algorithm for solving the case B = C = 0 is
proposed in [49] using the partial inverse of A with respect to V and extensions for the
cases B = 0 and C = 0 are proposed in [10] and [11], respectively. On the other hand, the
algorithms proposed in [5, 8, 4, 6, 7, 13, 19, 24, 23, 25, 27, 29, 31, 32, 39, 40, 43, 45, 46,
47, 53] can solve Problem 5.2.1 under additional assumptions or without exploiting the
vector subspace structure and the intrinsic properties of the operators involved. Indeed,
the algorithms in [8, 6, 7, 13, 23, 32] need to compute the resolvents of B and C, which are
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not explicit in general or they can be numerically expensive. In addition, previous methods
do not take advantage of the vector subspace structure of Problem 5.2.1. The schemes
proposed in [4, 24, 31, 39] take advantage of the properties of B, but the cocoercivity of C
and the vector subspace structure are not leveraged. In fact, the algorithms in [4, 24, 31, 39]
may consider B + C as a monotone and Lipschitzian operator and activates it twice by
iteration. In contrast, the algorithms in [19, 27, 43, 46, 47] activates B + C only once by
iteration, but they need to store in the memory the two past iterations and the step-size
is reduced significantly. In addition, the methods proposed in [5, 25, 29, 40, 45, 53] take
advantage of the cocoercivity of C, but they do not exploit neither the properties of B
nor the vector subspace structure of the problem.

Furthermore, note that Problem 5.2.1 can be solved by the algorithms proposed in [11,
18] by considering NV as any maximally monotone operator via product space techniques.
These approaches do not exploit the vector subspace structure of the problem and need to
update additional auxiliary dual variables at each iteration, which affects their efficiency
in large scale problems. Moreover, since B + C is monotone and (β−1 + L)-Lipschitzian,
Problem 5.2.1 can be solved by [11]. However, this implementation needs two computations
of C by iteration which affects its efficiency when C is computationally expensive and also
may increment drastically the number of iterations to achieve the convergence criterion,
as perceived in [11, Section 7.1] in the case V = H.

In this paper we propose a splitting algorithm which fully exploits the vector subspace
structure, the cocoercivity of C, and the Lipschitzian property of B. In the particular
case when V = H, we recover [11], which generalizes the forward-backward splitting and
Tseng’s splitting [52]. For general vector subspaces, our algorithm also recovers the meth-
ods proposed in [10, 11, 49]. By using standard product space techniques, we apply our
algorithm to solve composite primal-dual monotone inclusions including a normal cone to
a vector subspace, cocoercive, and Lipschitzian-monotone operators and composite convex
optimization problems under vector subspace constraints. We implement our method in
the context of TV-regularized least-squares problems with constraints and we compare its
performance with previous methods in the literature including [26]. We observe that, in the
case when the matrix in the data fidelity term has large norm values, our implementation
is more efficient.

The paper is organized as follows. In Section 5.2.2 we set our notation. In Section 5.2.3
we provide our main algorithm for solving Problem 5.2.1 and its proof of convergence. In
Section 5.2.4 we derive a method for solving a composite monotone primal-dual inclu-
sion, including monotone, Lipschitzian, cocoercive, and bounded linear operators. In this
section we also derive an algorithm for solve constrained composite convex optimization
problems. Finally, in Section 5.2.5 we provide numerical experiments illustrating the effi-
ciency of our proposed method.
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5.2.2 Notations and Preliminaries

Throughout this paper H and G are real Hilbert spaces. We denote their scalar products
by ⟨· | ·⟩, the associated norms by ∥ · ∥, and by ⇀ the weak convergence. Given a linear
bounded operator L : H → G, we denote its adjoint by L∗ : G → H. Id denotes the
identity operator on H. Let D ⊂ H be non-empty and let T : D → H. Let β ∈ ]0,+∞[.
The operator T is β−cocoercive if

(∀x ∈ D)(∀y ∈ D) ⟨x− y | Tx− Ty⟩ ≥ β∥Tx− Ty∥2 (5.2.2)

and it is L−Lipschitzian if

(∀x ∈ D)(∀y ∈ D) ∥Tx− Ty∥ ≤ L∥x− y∥. (5.2.3)

Let A : H → 2H be a set-valued operator. The domain, range, and graph of A are dom A ={
x ∈ H

∣∣Ax ̸= ∅
}
, ran A =

{
u ∈ H

∣∣ (∃x ∈ H)u ∈ Ax
}
, and graA =

{
(x, u) ∈ H ×H

∣∣ u ∈ Ax
}
,

respectively. The set of zeros of A is zerA =
{
x ∈ H

∣∣ 0 ∈ Ax
}
, the inverse of A is

A−1 : H → 2H : u 7→
{
x ∈ H

∣∣ u ∈ Ax
}
, and the resolvent of A is JA = (Id + A)−1. The

operator A is monotone if

(∀(x, u) ∈ graA)(∀(y, v) ∈ graA) ⟨x− y | u− v⟩ ≥ 0 (5.2.4)

and it is maximally monotone if it is monotone and there exists no monotone operator
B : H → 2H such that graB properly contains graA, i.e., for every (x, u) ∈ H ×H,

(x, u) ∈ graA ⇔ (∀(y, v) ∈ graA) ⟨x− y | u− v⟩ ≥ 0. (5.2.5)

We denote by Γ0(H) the class of proper lower semicontinuous convex functions f : H →
]−∞,+∞]. Let f ∈ Γ0(H). The Fenchel conjugate of f is defined by f ∗ : u 7→ supx∈H(⟨x | u⟩−
f(x)), which is a function in Γ0(H), the subdifferential of f is the maximally monotone
operator

∂f : x 7→
{
u ∈ H

∣∣ (∀y ∈ H) f(x) + ⟨y − x | u⟩ ≤ f(y)
}
,

we have that (∂f)−1 = ∂f ∗, and that zer ∂f is the set of minimizers of f , which is denoted
by argminx∈H f . We denote by

proxf : x 7→ argmin
y∈H

(
f(y) +

1

2
∥x− y∥2

)
. (5.2.6)

We have proxf = J∂f . Moreover, it follows from [3, Theorem 14.3] that

proxγf + γproxf∗/γ ◦ Id/γ = Id. (5.2.7)

Given a non-empty closed convex set C ⊂ H, we denote by PC the projection onto C, by
ιC ∈ Γ0(H) the indicator function of C, which takes the value 0 in C and +∞ otherwise,
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and by NC = ∂(ιC) the normal cone to C. The partial inverse of A with respect to a
closed vector subspace V of H, denoted by AV , is defined by

(∀(x, y) ∈ H2) y ∈ AV x ⇔ (PV y + PV ⊥x) ∈ A(PV x+ PV ⊥y). (5.2.8)

Note that AH = A and A{0} = A−1. For further properties of monotone operators, non-
expansive mappings, and convex analysis, the reader is referred to [3].

The following is a simplified version of the algorithm proposed in [15, Theorem 2.3].

Proposition 5.2.2. [15, Theorem 2.3] Let L̂ ∈ ]0,+∞[, let β̂ ∈ ]0,+∞[, let A : H → 2H

be a maximally monotone operator, let B : H → H be monotone and L̂-Lipschitzian, and
let C : H → H be a β̂-cocoercive operator. Suppose that zer(A+ B + C) ̸= ∅ and set

χ̂ =
4β̂

1 +

√
1 + 16β̂2L̂2

∈
]
0,min

{
2β̂,

1

L̂

}[
, (5.2.9)

let (λn)n∈N be a sequence in [ε, χ̂ − ε], for some ε ∈ ]0, χ̂/2[. Moreover, let z0 ∈ H and
consider the following recurrencefor n = 1, 2, . . .

sn = JλnA
(
zn − λn(B + C)zn

)
zn+1 = sn + λn(Bzn − Bsn).

(5.2.10)

Then, (zn)n∈N converges weakly to some z ∈ zer(A+ B + C).

Observe that (5.2.10) reduces to forward-backward splitting when B = 0 (and L = 0),
and to a version of Tseng’s splitting when C = 0 (and β → +∞) [13, 52].

5.2.3 Main Result

The following is our main algorithm, whose convergence is proved in Theorem 5.2.4 below.

Algorithm 5.2.3. In the context of Problem 5.2.1, let (x0, y0) ∈ V ×V ⊥, let γ ∈ ]0,+∞[,
and let (λn)n∈N be a sequence in ]0,+∞[. Consider the recurrence

for n = 1, 2, . . .

find (pn, qn) ∈ H2 such that xn + γyn − λnγPV (B + C)xn = pn + γqn

and
PV qn
λn

+ PV ⊥qn ∈ A

(
PV pn +

PV ⊥pn
λn

)
,

xn+1 = PV pn + λnγPV (Bxn −BPV pn),

yn+1 = PV ⊥qn.

(5.2.11)
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Note that (5.2.3) involves only one activation of C, two of B, and three projections
onto V at each iteration.

Theorem 5.2.4. In the context of Problem 5.2.1, set

χ =
4β

1 +
√

1 + 16β2L2
∈
]
0,min

{
2β,

1

L

}[
, (5.2.12)

let γ ∈ ]0,+∞[, and let (λn)n∈N be a sequence in [ε, χ/γ − ε] for some ε ∈ ]0, χ/(2γ)[.
Moreover, let (x0, y0) ∈ V ×V ⊥ and let (xn)n∈N and (yn)n∈N be the sequences generated by
Algorithm 5.2.3. Then (xn)n∈N and (yn)n∈N are sequences in V and V ⊥, respectively, and
there exist x ∈ Z and y ∈ V ⊥ ∩ (Ax+ PV (B + C)x) such that xn ⇀ x and yn ⇀ y.

Proof. Define 
Aγ = (γA)V : H → 2H

Bγ = γPV ◦B ◦ PV : H → H
Cγ = γPV ◦ C ◦ PV : H → H.

(5.2.13)

It follows from [11, Proposition 3.1(i)&(ii)] that Aγ is maximally monotone and that Bγ

is monotone and γL-Lipschitzian. Moreover, Cγ is β/γ-cocoercive in view of [10, Propo-
sition 5.1(ii)]. Since C is β−1-Lipschitzian, B + C is (β−1 + L)-Lipschitzian, and (5.2.13)
and the linearity of PV yield

Bγ + Cγ = γPV ◦ (B + C) ◦ PV . (5.2.14)

Therefore, [11, Proposition 3.1(iii)] implies that x̂ ∈ H is a solution to Problem 5.2.1 if
and only if

x̂ ∈ V and
(
∃ŷ ∈ V ⊥ ∩ (Ax̂+Bx̂+ Cx̂)

)
x̂+ γ

(
ŷ − PV ⊥(B + C)x̂

)
∈ zer(Aγ + Bγ + Cγ). (5.2.15)

Now, since x0 ∈ V and y0 ∈ V ⊥, it follows from Algorithm 5.2.11 that (xn)n∈N and
(yn)n∈N are sequences in V and V ⊥, respectively. In addition, from Algorithm 5.2.11 and
[11, Proposition 3.1(i)] we deduce that

(∀n ∈ N) JλnAγ (xn + γyn − λnγPV (B + C)xn) = PV pn + γPV ⊥qn. (5.2.16)

For every n ∈ N, set zn = xn + γyn and set sn = PV pn + γPV ⊥qn. Hence, for every n ∈ N,
PV sn = PV pn, PV ⊥sn = γPV ⊥qn, and (5.2.16) and (5.2.14) yield

sn = JλnAγ (xn + γyn − λnγPV (B + C)xn)

= JλnAγ (zn − λnγPV (B + C)PV zn)

= JλnAγ

(
zn − λn(Bγ + Cγ)zn

)
. (5.2.17)
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Thus, from Algorithm 5.2.11 we deduce that, for every n ∈ N,

zn+1 = xn+1 + γyn+1

= PV pn + λnγPV (Bxn −BPV pn) + γPV ⊥qn

= PV sn + λn(γPVBPV zn − γPVBPV sn) + PV ⊥sn

= sn + λn(Bγzn − Bγsn). (5.2.18)

Therefore, we obtain from (5.2.17) and (5.2.18) thatfor n = 1, 2, . . .

sn = JλnAγ

(
zn − λn(Bγ + Cγ)zn

)
zn+1 = sn + λn(Bγzn − Bγsn).

(5.2.19)

Altogether, by setting β̂ = β/γ and L̂ = γL, we have χ̂ = χ/γ and Proposition 5.2.2
asserts that there exists z ∈ zer(Aγ + Bγ + Cγ) such that zn ⇀ z. Furthermore, by
setting x = PV z and y = PV ⊥z/γ, we have −(Bγ + Cγ)(x + γy) ∈ Aγ(x + γy), which,
in view of (5.2.13), is equivalent to −PV (B + C)x + y ∈ Ax. Therefore, by defining
ŷ = y + PV ⊥(B + C)x ∈ V ⊥ ∩ (Ax + Bx + Cx), we have x + γ(ŷ − PV ⊥(B + C)x) ∈
zer(Aγ +Bγ + Cγ) and (5.2.15) implies that x ∈ Z and that y ∈ V ⊥ ∩ (Ax+PV (B+C)x).
Moreover, from the weakly continuity of PV and PV ⊥ , we obtain xn = PV zn ⇀ PV z = x
and yn = PV ⊥zn/γ ⇀ PV ⊥z/γ = y, which completes the proof.

The sequence (λn)n∈N in Algorithm 5.2.3 can be manipulated in order to accelerate
the convergence. However, as in [10, 11, 50], the inclusion in (5.2.11) is not always easy
to solve. The following result provides a particular case of our method, in which this
inclusion can be explicitly computed in terms of the resolvent of A.

Corollary 5.2.5. In the context of Problem 5.2.1, let (x0, y0) ∈ V ×V ⊥, let χ ∈ ]0,+∞[ be
the constant defined in (5.2.12), let γ ∈ ]0, χ[, and let (xn)n∈N and (yn)n∈N be the sequences
generated by the recurrence

for n = 1, 2, . . .

pn = JγA
(
xn + γyn − γPV (B + C)xn

)
rn = PV pn

xn+1 = rn + γPV (Bxn −Brn)

yn+1 = yn −
pn − rn

γ
.

(5.2.20)

Then, there exist x ∈ Z and y ∈ V ⊥ ∩ (Ax+ PV (B +C)x) such that xn ⇀ x and yn ⇀ y.
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Proof. Note that (5.2.20) implies that (xn)n∈N and (yn)n∈N are sequences in V and V ⊥,
respectively. Fix n ∈ N and set qn = (xn+γyn−γPV (B+C)xn−pn)/γ. Hence, we obtain
from (5.2.20) that pn + γqn = xn + γyn − γPV (B + C)xn, that qn ∈ Apn, that xn+1 =
PV pn+γPV (Bxn−BPV pn), and that yn+1 = yn−(pn−PV pn)/γ = yn−PV ⊥pn/γ = PV ⊥qn.
Therefore, (5.2.20) is a particular case of Algorithm 5.2.3 when λn ≡ 1 ∈ ]0, χ/γ[ and the
result hence follows from Theorem 5.2.4.

Remark 5.2.6. 1. Note that, in the case when C = 0, (5.2.20) reduces to the method
proposed in [11]. Observe that in this case we can take β → +∞ which yields
χ → 1/L.

2. Note that, in the case when B = 0, (5.2.20) reduces to the method proposed in [10].
In this case, we can take L → 0, which yields χ → 2β.

3. In the case when V = H, (5.2.20) reduces to the algorithm proposed in [15] (see also
Proposition 5.2.2).

5.2.4 Applications

In this section we tackle the following composite primal-dual monotone inclusion.

Problem 5.2.7. Let H be a real Hilbert space, let V be a closed vector subspace of H,
let A : H → 2H be maximally monotone, let M : H → H be monotone and µ-Lipschitzian,
for some µ ∈ ]0,+∞[, let C : H → H be ζ-cocoercive, for some ζ ∈ ]0,+∞[, and let m
be a strictly positive integer. For every i ∈ {1, . . . ,m}, let Gi be a real Hilbert space, let
Bi : Gi → 2Gi be maximally monotone, let Ni : Gi → 2Gi be monotone and such that N−1

i

is νi-Lipschitzian, for some νi ∈ ]0,+∞[, let Di be maximally monotone and δi-strongly
monotone, for some δi ∈ ]0,+∞[, and let Li : H → Gi be a nonzero bounded linear operator.
The problem is to

find x ∈ H, u1 ∈ G1, . . . , um ∈ Gm such that
0 ∈ Ax+Mx+ Cx+

∑m
i=1 L

∗
i ui +NVx

0 ∈
(
B−1
1 + N−1

1 + D−1
1

)
u1 − L1x

...

0 ∈
(
B−1
m + N−1

m + D−1
m

)
um − Lmx,

(5.2.21)

under the assumption that the solution set Z to (5.2.21) is nonempty.

Note that, if (x, u1, . . . , um) ∈ Z then x solves the primal inclusion

find x ∈ H such that 0 ∈ Ax+Mx+ Cx+
m∑
i=1

L∗i ((Bi□Ni□Di) Lix) +NVx (5.2.22)
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and (u1, . . . , um) solves the dual inclusion

find u1 ∈ G1, . . . , um ∈ Gm such that

(∃x ∈ H)

{
−
∑m

i=1 L
∗
i ui ∈ Ax+Mx+ Cx+NVx

(∀i ∈ {1, . . . ,m}) ui ∈
(
Bi□Ni□Di

)
Lix.

(5.2.23)

In the case when V = H, C = 0, and, for every i ∈ {1, . . . ,m}, D−1
i = 0, this problem

can be solved by algorithms in [22, 24] by using Tseng’s splitting [52] in a suitable product
space. In the case when V = H, M = 0, and, for every i ∈ {1, . . . ,m}, N−1

i = 0, this
problem can be solved by algorithms in [25, 53] by using forward-backward splitting in a
suitable product space. Since M+C and (N−1

i +D−1
i )1≤i≤m are monotone and Lipschitzian

and NV is maximally monotone, Problem 5.2.7 can be solved by the algorithms in [22, 24].
However, these methods do not exploit the cocoercivity or the vector subspace structure
of Problem 5.2.7. Other algorithms as those in [23, 40, 17] provide alternatives for solving
Problem 5.2.7, but any of them exploit its vector subspace and cocoercive structure. In the
case when M = 0, and, for every i ∈ {1, . . . ,m}, N−1

i = 0, the algorithm in [16] exploits the
vector subspace structure of Problem 5.2.7 by using the partial inverse of A with respect
to V . The following result provides a fully split algorithm to solve Problem 5.2.7 in its
full generality. It is obtained by using (5.2.20) in a suitable product space, which exploits
the vector subspace structure and which activates each cocoercive operator only once by
iteration.

Proposition 5.2.8. Consider the framework of Problem 5.2.7 and set

L = max{µ, ν1, . . . , νm}+

√√√√ m∑
i=1

∥Li∥2 and β = min{ζ, δ1, . . . , δm}. (5.2.24)

Let x0 ∈ V, let y0 ∈ V⊤, for every i ∈ {1, . . . ,m}, let ui,0 ∈ Gi, set γ ∈ ]0, χ[, where χ is
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defined in (5.2.12), and consider the routine

for n = 1, 2, . . .

pn = JγA

(
xn + γyn − γPV

(
(M+ C)xn +

m∑
i=1

L∗i ui,n

))
qn = PVpn
for i = 1, . . . ,m

ri,n = JγB−1
i

(
ui,n − γ

(
(N−1

i + D−1
i )ui,n − Lixn

))
ui,n+1 = ri,n − γ

(
N−1

i ri,n − N−1
i ui,n − Li(qn − xn)

)
xn+1 = qn − γPV

(
Mqn −Mxn +

m∑
i=1

L∗i (ri,n − ui,n)

)
yn+1 = yn −

pn − qn
γ

.

(5.2.25)

Then, (xn)n∈N is a sequence in V and there exists (x, u1, . . . , um) ∈ Z such that xn ⇀ x
and, for every i ∈ {1, . . . ,m}, ui,n ⇀ ui.

Proof. Set H = H⊕ G1 ⊕ · · · ⊕ Gm and define
A : H → 2H : (x, u1, . . . , um) 7→ Ax× B−1

1 u1 × · · · × B−1
m um

B : H → H : (x, u1, . . . , um) 7→
(
Mx+

∑m
i=1 L

∗
i ui,N

−1
1 u1 − L1x, . . . ,N

−1
m um − Lmx

)
C : H → H : (x, u1, . . . , um) 7→ (Cx,D−1

1 u1, . . . ,D
−1
m um)

V =
{
(x, u1, . . . , um) ∈ H

∣∣ x ∈ V
}
.

(5.2.26)
Then, A is maximally monotone and B is monotone and L-Lipschitzian [24, eq.(3.11)],
C is β-cocoercive [53, eq.(3.12)], and V is a closed vector subspace of H. Therefore,
Problem 5.2.7 is a particular instance of Problem 5.2.1. Moreover, we have from [3,
Proposition 23.18] that{

(∀γ > 0) JγA : (x, u1, . . . , um) 7→ (JγAx, JγB−1
1
u1, . . . , JγB−1

m
um)

PV : (x, u1, . . . , um) 7→ (PVx, u1, . . . , um).
(5.2.27)

Altogether, by defining

(∀n ∈ N)


xn = (xn, u1,n, . . . , um,n)

yn = (yn, 0, . . . , 0)

pn = (pn, r1,n, . . . , rm,n)

qn = (qn, s1,n, . . . , sm,n),

(5.2.28)
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(5.2.25) is a particular case of (5.2.11) and the convergence follows from Corollary 5.2.5.

Remark 5.2.9. In the particular case when V = H and C = D−1
1 = · · · = D−1

m = 0,
Proposition 5.2.8 recovers the main result in [24, Theorem 3.1] in the error-free case. By
including non-standard metrics in the space H as in [11], we can also recover [16] when
M = N−1

1 = · · · = N−1
m = 0 and [53] if we additionally assume that V = H, but we preferred

to avoid this generalization for simplicity.

We now provide two important examples of Problem 5.2.7 and Proposition 5.2.8 in the
context of convex optimization.

Example 5.2.10. Suppose that A = ∂f, M = N−1
1 = · · · = N−1

m = 0, C = ∇h, for every
i ∈ {1, . . . ,m}, Di = ∂ℓi and Bi = ∂gi, where f ∈ Γ0(H), h : H → R is convex differentiable
with ζ−1-Lipschitzian gradient, for every i ∈ {1, . . . ,m}, ℓi ∈ Γ0(Gi) is νi-strongly convex
and gi ∈ Γ0(Gi). Then under the qualification condition [24, Proposition 4.3(i)]

(0, . . . , 0) ∈ sri
(
×m

i=1

(
Li(V ∩ dom f)− (dom gi + dom ℓi)

))
, (5.2.29)

Problem 5.2.7 is equivalent to

min
x∈V

(
f(x) + h(x) +

m∑
i=1

(gi□ ℓi)(Lix)

)
, (5.2.30)

which, in view of Proposition 5.2.8, can be solved by the algorithm

for n = 1, 2, . . .

pn = proxγf

(
xn + γyn − γPV

(
∇h(xn) +

m∑
i=1

L∗i ui,n

))
qn = PVpnfor i = 1, . . . ,m

ri,n = proxγg∗i

(
ui,n − γ(∇ℓ∗i (ui,n)− Lixn)

)
ui,n+1 = ri,n + γLi(qn − xn)

xn+1 = qn − γPV

( m∑
i=1

L∗i (ri,n − ui,n)

)
yn+1 = yn −

pn − qn
γ

,

(5.2.31)

where x0 ∈ V , y0 ∈ V ⊥, for every i ∈ {1, . . . ,m}, ui,0 ∈ Gi, L =
√∑m

i=1 ∥Li∥2, β =
min{ζ, δi, . . . , δm}, χ is defined in (5.2.12), and γ ∈ ]0, χ[. Observe that the algorithm
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(5.2.31) exploits the cocoercivity of ∇h and (∇ℓ∗i )1≤i≤m by implementing them only once
by iteration a difference of [24, Theorem 4.2], which needs to implement them twice by
iteration.

Example 5.2.11. Consider the convex minimization problem

min
x∈H

(
f (x ) + g(Lx ) + h(Ax )

)
, (5.2.32)

where H , G, and K are real Hilbert spaces, f ∈ Γ0(H ), g ∈ Γ0(G), L : H → G, A : H → K ,
h : K → R is convex, differentiable with β−1-Lipschitzian gradient, and suppose that

0 ∈ sri (L dom f − dom g). (5.2.33)

Note that h◦A is convex, differentiable, and ∇(h◦A) = A∗◦∇h◦A is β−1∥A∥2−Lipschitzian.
Then, (5.2.32) can be solved by the primal-dual algorithm proposed in [26, 53], whose
convergence is guaranteed under the assumption

σ∥L∥2 ≤ 1

τ
− ∥A∥2

2β
, (5.2.34)

where τ > 0 and σ > 0 are primal and dual step-sizes, respectively. Observe that, when
∥A∥ is large, this method is forced to choose small primal and dual step-sizes in order to
ensure convergence. To overcome this inconvenient, we propose the following formulation

min
x∈V

(
f(x) + h(x) + g(Lx)

)
, (5.2.35)

where 

H = H ⊕ K
G = G
T : x = (x ,w) 7→ Ax − w
V = kerT

f : x = (x ,w) 7→ f (x )
g = g
L : x = (x ,w) 7→ Lx
h : x = (x ,w) 7→ h(w).

(5.2.36)

Since in this case (5.2.29) reduces to (5.2.33), (5.2.32) is a particular instance of (5.2.30)
when m = 1 and ℓ1 = 0. Therefore, in view of [3, Example 29.19], (5.2.32) can be solved
by the routine in (5.2.31) which, on this setting, reduces to:
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

for n = 1, 2, . . .

p1,n = proxγf

(
xn + γy1,n − γ

(
L∗un − A∗B

(
AL∗un −∇h(wn)

)))
p2,n = wn + γy2,n − γ

(
∇h(wn) + B

(
AL∗un −∇h(wn)

))
q1,n = p1,n − A∗B

(
Ap1,n − p2,n

)
q2,n = p2,n + B

(
Ap1,n − p2,n

)
rn = proxγg∗

(
un + γLxn

)
un+1 = rn + γL(q1,n − xn)
xn+1 = q1,n − γ (L∗(rn − un)− A∗BAL∗(rn − un))
wn+1 = q2,n − γBAL∗(rn − un)

y1,n+1 = y1,n −
p1,n+1 − q1,n+1

γ

y2,n+1 = y2,n −
p2,n+1 − q2,n+1

γ
,

(5.2.37)

where B = (Id+AA∗)−1 can be computed only once before the loop, (x0,w0) ∈ V , (y1,0, y2,0) ∈
V ⊥, u0 ∈ G, L = ∥L∥, χ is defined in (5.2.12), and γ ∈ ]0, χ[.

5.2.5 Numerical Experiments

In this section we consider the following optimization problem

min
y0≤x≤y1

(α1

2
∥Ax − z∥2 + α2∥∇x ∥1

)
, (5.2.38)

where y0 = (η0i )1≤i≤N , y1 = (η1i )1≤i≤N are vectors in RN , α1 and α2 are in ]0,+∞[,
A ∈ RK×N , z ∈ RK , and ∇ : RN → RN−1 : (ξi)1≤i≤N 7→ (ξi+1 − ξi)1≤i≤N−1 is the discrete
gradient. This problem appears when computing the fusion estimator in fused LASSO
problems [33, 44, 51].

Note that (5.2.38) can be written equivalently as (5.2.32), where

H = RN

f = ιC

C = ×N
i=1[η

0
i , η

1
i ]

g = α2∥ · ∥1
h = α1∥ · −z∥2/2
L = ∇

(5.2.39)
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Since f ∈ Γ0(RN), g ∈ Γ0(RN−1), h is convex, differentiable, ∇h = α1(Id − z) is
α1−Lipschitzian, ∥L∥ = 2, and (5.2.33) is trivially satisfied, (5.2.38) is a particular in-
stance of Example 5.2.11. Hence, (5.2.38) can be solved by the algorithm in [26, 53]
(called Condat-Vũ), by (5.2.37) (called FPIHF), and by [11] (called FPIF), which are
compared in this section. In this context, the Algorithm Condat-Vũ [26, 53] reduces to
the following routine.

Algorithm 4 Condat-Vũ [26, 53]

1: Let x0 ∈ RN and u0 ∈ RN−1, let (σ, τ, ρ) ∈ ]0,+∞[3, and fix ϵ0 > ε > 0.
2: while ϵn > ε do
3: pn+1 = PC

(
xn − τ(α1A⊤(Axn − z) +∇⊤un)

)
4: qn+1 = σ(Id− proxα2∥·∥1/σ)(un/σ +∇(2pn+1 − xn))
5: xn+1 = xn + ρ(pn+1 − xn)
6: un+1 = un + ρ(qn+1 − un)
7: ϵn+1 = R

(
(xn+1, un+1), (xn, un)

)
8: end while
9: return (xn+1, un+1)

Observe that PC : (ξi)1≤i≤N 7→ (max{min{ξi, η1i }, η0i })1≤i≤N . The convergence of Algo-
rithm 4 is guaranteed if

σ∥L∥2 ≤ 1

τ
− α1∥A∥2

2
and ρ ∈ ]0, δ[ , where δ = 2− α1∥A∥2

2( 1
τ
− σ∥L∥2)

. (5.2.40)

Note that, the larger is α1∥A∥2, the smaller should be τ and σ in order to achieve con-
vergence. On the other hand, by considering T defined in (5.2.36), the method in (5.2.37)
writes as follows.
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Algorithm 5 Forward-partial inverse-half-forward splitting (FPIHF)

1: Set B = (Id + AA⊤)−1, let (x0,w0) ∈ (kerT)2, (y1,0, y2,0) ∈ (kerT⊥)2, u0 ∈ RK , let
γ ∈ ]0,+∞[, and fix ϵ0 > ε > 0.

2: while ϵn > ε do
3: p1,n = PC

(
xn + γy1,n − γ

(
∇⊤un − A⊤B

(
A∇⊤un − α1(wn − z)

)))
4: p2,n = wn + γy2,n − γ

(
α1(wn − z) + B

(
A∇⊤un − α1(wn − z)

))
5: q1,n = p1,n − A⊤B(Ap1,n − p2,n

)
6: q2,n = p2,n + B

(
Ap1,n − p2,n

)
7: rn = γ(Id− proxα2∥·∥1/γ)(un/γ +∇xn)
8: un+1 = rn + γ∇(q1,n − xn)
9: xn+1 = q1,n − γ

(
∇⊤(rn − un)− A⊤BA∇⊤(rn − un)

)
10: wn+1 = q2,n − γBA∇⊤(rn − un)
11: y1,n+1 = y1,n − (p1,n+1 − q1,n+1)/γ
12: y2,n+1 = y2,n − (p2,n+1 − q2,n+1)/γ
13: ϵn+1 = R

(
(xn+1,wn+1, y1

n+1, y2
n+1), (xn,wn, y1

n, y2
n)
)

14: end while
15: return (xn+1,wn+1, y1

n+1, y2
n+1)

In view of Example 5.2.11, the algorithm in (5.2.37) reduces to Algorithm 5, whose
convergence is guaranteed if the step-size γ satisfies

0 < γ < χ =
4

α1 +
√
α2
1 + 64

. (5.2.41)

Observe that the condition for the step-size γ in (5.2.41) does not depend on ∥A∥.
The FPIF algorithm proposed in [11] for solving (5.2.38) differs from Algorithm 5 in the

fact that the cocoercive gradient∇h : x 7→ x −z is implemented twice by iteration. Indeed,
the algorithm considers the monotone Lipschitzian operator (x , u,w) 7→ (∇⊤u,∇x , α1(w−
z)), whose Lipschitz constant follows from

|||
(
∇⊤u1,∇x1, α1(w1 − z)

)
−
(
∇⊤u2,∇x2, α1(w2 − z)

)
|||2

= ∥∇⊤(u1 − u2)∥2 + ∥∇(x1 − x2)∥2 + α2
1∥w1 − w2∥2

≤ ∥∇⊤∥2∥u1 − u2∥2 + ∥∇∥2∥x1 − x2∥2 + α2
1∥w1 − w2∥2

≤ max{∥∇∥2, α2
1}|||(x1 − x2, u1 − u2,w1 − w2)|||2.

Therefore, the convergence of FPIF is guaranteed if γ ∈ ]0, 1/max{∥∇∥, α1}[, and, as in
Algorithm 5, this condition does not depend on ∥A∥. In order to compare Condat-Vũ,
FPIHF, and FPIF, we set α1 = 5 and α2 = 0.5 and we consider A = κ · rand(N,K), y0 =
−1.5 · rand(N), y1 = 1.5 · rand(N), and z = randn(N), where κ ∈ {1/5, 1/10, 1/20, 1/30},
N ∈ {600, 1200, 2400}, K ∈ {N/3, N/2, 2N/3}, and rand(·, ·) and randn(·, ·) are functions
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in MATLAB generating matrices/vectors with uniformly and normal distributed entries,
respectively. For each value of κ, N , and K, we generate 20 random realizations for A, z,
y0, and y1. Note that the average value of ∥A∥ increases as κ increase (see Figure 5.1 for
K = N/2), which affects Algorithm 4 in view of (5.2.40). We also set ρ = 0.99·δ, where δ is
defined in (5.2.40). In this setting, from (5.2.41) we deduce that the convergence of FPIHF
is guaranteed for γ < χ ≈ 0.2771. On the other hand, since max{∥∇∥, α1} = α1 = 5, the
convergence of FPIF is guaranteed for γ < 0.2.
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Figure 5.1: Box plot for the norm of the 20 random realizations of A, N ∈
{600, 1200, 2400}, K = N/2.

In Tables 5.1-5.4 we provide the average time and number of iterations to achieve
a tolerance ε = 10−6 for each algorithm under study. In the case when an algorithm
exceeds 50000 iterations in all cases, we write “⊠” in both columns. From these tables
we can observe that when κ increases (and therefore, ∥A∥ increases), Condat-Vũ reduces
its performance and does not converge within 50000 iterations for big dimensions and
large values of κ. Moreover, the number of iterations of FPIHF is considerably lower
than its competitors but with expensive computational time by iteration. This can be
explained by the fact that FPIHF needs to compute three projections onto the kernel
of (x ,w) 7→ Ax − w at each iteration. We can also perceive that, at exception of some
cases, the partial inverse-based algorithms increase their computational time to achieve
convergence when K is larger. This can be explained by the fact that the dimension of
matrix B is larger as K is larger, and it has to be implemented three times by iteration.

When κ = 1/30, we observe from Table 5.1, that FPIHF and Condat-Vũ are compet-
itive and both are more efficient than FPIF. When κ = 1/20, we observe from Table 5.2
that FPIHF outperforms Condat-Vũ and FPIF for large dimensions. When κ = 1/10,
we observe from Table 5.3 that FPIHF is the best algorithm at exception of the smallest
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Table 5.1: Comparison of Condat-Vũ, FPIF, and FPIHF for the case κ = 1/30.

K = N/3 K = N/2 K = 2N/3
N Algorithm Av. time (s) Av. iter Av. time (s) Av. iter Av. time (s) Av. iter

600
Condat-Vũ 0.89 11059 0.80 10047 0.76 9666

FPIF 3.46 17454 3.91 14353 7.20 17430
FPIHF 0.99 4851 1.24 4442 1.73 3996

1200
Condat-Vũ 11.32 17321 10.55 16129 10.54 16082

FPIF 25.52 19930 32.37 13788 51.54 16443
FPIHF 7.07 5425 13.76 5838 23.83 7570

2400
Condat-Vũ 74.17 34059 70.14 32216 69.48 31963

FPIF 95.55 17747 138.67 16074 190.06 17216
FPIHF 43.08 7961 64.68 7464 70.64 6369

Table 5.2: Comparison of Condat-Vũ, FPIF, and FPIHF for the case κ = 1/20.

K = N/3 K = N/2 K = 2N/3
N Algorithm Av. time (s) Av. iter Av. time (s) Av. iter Av. time (s) Av. iter

600
Condat-Vũ 0.86 10752 0.81 10263 0.87 10992

FPIF 2.67 13381 3.91 14204 5.88 14258
FPIHF 0.97 4725 0.82 2900 1.63 3747

1200
Condat-Vũ 13.91 21209 13.35 20359 12.51 19118

FPIF 23.30 18142 45.16 19222 52.60 16773
FPIHF 9.07 6943 20.53 8689 10.91 3458

2400
Condat-Vũ 103.92 47673 98.92 45543 91.33 41996

FPIF 89.77 16659 132.60 15374 145.58 13181
FPIHF 32.27 5957 45.35 5234 83.48 7539

dimensional case in which it is competitive with Condat-Vũ. The latter does not con-
verge within 50000 for dimension N = 2400. When κ = 1/5, FPIHF is the more efficient
algorithm in all the cases under study, as it is illustrated in Table 5.4. Moreover, Condat-
Vũ converge before 50000 iterations only in the lower dimensional case when N = 600.
We conclude that, for higher values of ∥A∥ and larger dimensions, is more convenient to
implement FPIHF.
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Chapter 6

Forward-Backward-Half Forward
Algorithm with Line Search for
Monotone Inclusions

6.1 Introduction and Main Results

In this chapter we aim at solving numerically the following problem.

Problem 6.1.1. Let X be a nonempty closed convex subset of a real Hilbert space H,
let A : H → 2H be a maximally monotone operator, let B : H → H be a β-cocoercive
operator, for some β > 0, let B2 : H → H be a monotone and L-Lipschitzian operator
for some L > 0, and let B3 : H → 2H be a maximally monotone operator such that B3 is
single valued and continuous in domA ∪ X ⊂ domB3. Moreover assume that A + B3 is
maximally monotone. The problem is to

find x ∈ X such that 0 ∈ Ax+Bx+B2x+B3x, (6.1.1)

under the assumption that the set of solutions to (6.1.1) is nonempty.

This inclusion encompasses several problems in partial differential equations coming
from mechanical models [24, 25, 26], differential inclusions [1, 36], game theory [11], among
other disciplines.

The method proposed in this chapter splits the influence of the four operators involved
in Problem 6.1.1. The operator A is activated implicitly via its resolvent, B and B2

are activated explicitly, and B3 is activated using a backtracking in order to define the
step-sizes.

We first study some properties of the monotone operators involved in Problem 6.1.1,
which ensure the finite termination of the backtracking procedure in our method.

134



Chapter 6 Composite Monotone Inclusions in Vector Subspaces

Lemma 6.1.2. In the context of Problem 6.1.1, let z and y in H, and define

(∀γ > 0) xz,y(γ) = JγA(z − γy) and φz,y(γ) =
∥z − xz,y(γ)∥

γ
. (6.1.2)

Then, the following statements holds:

1. φz,y is nonincreasing.

2. (∀z ∈ domA) lim
γ↓0

φz,y(γ) = ∥(A+ y)0z∥ = min
w∈Az+y

∥w∥.

3. Set
C =

{
z ∈ H

∣∣ lim
γ↓0

φz,y(γ) < +∞
}
. (6.1.3)

Then, domA ⊂ C ⊂ domA.

4. Suppose that one of the following holds:

(a) z ∈ C.
(b) z ∈ domB3 \ C, y = (B1 +B2 +B3)z and B3 is locally bounded at PdomAz.

(c) z ∈ domB3 \ C, y = (B1 +B2 +B3)z, and domA ⊂ int domB3.

Then, for every θ ∈ ]0, 1[, there exists γ(z) > 0 such that, for every γ ∈ ]0, γ(z)],

γ∥B3z −B3xz,y(γ)∥ ≤ θ∥z − xz,y(γ)∥. (6.1.4)

Note that Lemma 6.1.2 generalizes [12, Lemma 2.2]. More precisely, in the case when
B2 = 0, by setting y = (B1+B3)z in Lemma 6.1.2(1)&(2), we recover [12, Lemma 2.2(1)].
Moreover, realizing that [12, Lemma 2.2(2)] is valid for every z ∈ domA, it is a particular
case of Lemma 6.1.2(3)&(4a).

The following is our main result from this section.

Theorem 6.1.3. In the context of Problem 6.1.1, suppose that one of the following holds:

1. X ⊂ domA.

2. domA ⊂ domB3 and B3 is locally bounded in domB3.

3. domA ⊂ int domB3.

Let ε ∈ ]0, 1[, set ρ = min{2βε,
√
1− ε/L}, let σ ∈ ]0, 1[, let θ ∈

]
0,
√
1− ε− Lρσ

[
, let

z0 ∈ domB3, and consider the sequence (zn)n∈N defined by the recurrence

(∀n ∈ N)
⌊

xn = JγnA(zn − γn(B +B2 +B3)zn)
zn+1 = PX(xn + γn(B2 +B3)zn − γn(B2 +B3)xn),

(6.1.5)
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where, for every n ∈ N, γn is the largest γ ∈ {ρσ, ρσ2, ρσ3, · · · } satisfying

γ∥B3zn−B3JγA(zn−γ(B+B2+B3)zn)∥ ≤ θ∥zn−JγA(zn−γ(B+B2+B3)zn)∥. (6.1.6)

Moreover, assume that at least one of the following additional statements hold:

(i) lim inf
n→∞

γn = δ > 0.

(ii) B3 is uniformly continuous in any weakly compact subset of conv (domA ∪X).

Then, (zn)n∈N converges weakly to a solution to Problem 6.1.1.

Theorem 6.1.3 is a generalization of [12, Theorem 2.3]. Indeed, when B2 = 0 and X ⊂
domA, by taking L → 0, we have ρ → 2βε and θ ∈

]
0,
√
1− ε

[
. Hence, Theorem 6.1.3

recovers [12, Theorem 2.3(2)] noting that the uniform continuity in weakly compact subsets
of conv (domA ∪ X) = domA is needed. We hence generalize [12, Theorem 2.3(1)&(2)]
to the case when X ̸⊂ domA.

In addition, the algorithm in (6.1.5) is a generalization of FBHF (Algorithm 1.1.13),
FBS (Algorithm 1.1.10), and Tseng’s splitting [38]. More precisely, in Theorem 6.1.3, if
B3 = 0, we have domB3 = H and, for all n ∈ N, γn = σρ = σmin{2βε,

√
1− ε/L}. Since,

in this case (γn)n∈N is constant, the largest step-size is obtained by taking ε = ε(L, β) =
2/(1 +

√
1 + 16β2L2), which satisfies 2βε =

√
1− ε/L = χ(L, β), where

χ(L, β) =
4β

1 +
√
1 + 16β2L2

, (6.1.7)

and γn ≡ γ = σχ(L, β) ∈ ]0, χ(L, β)[. Hence, we recover the result in [12, Theorem 2.3(1)]
for constant step-sizes. Additionally, if B2 = 0 and X = H, we have ε(L, β) → 1 and
χ(L, β) → 2β as L → 0 and γn ≡ 2βσ ∈ ]0, 2β[, recovering the the forward backward
algorithm [29]. On the other hand, if B1 = 0, we have χ(L, β) → 1/L as β → ∞ and
γn ≡ σ/L ∈ ]0, 1/L[, recovering the result in [38] for constant step-sizes.

Next, on this chapter, we derive a method for solving the following optimization prob-
lem.

Problem 6.1.4. Let f ∈ Γ0(H), let g ∈ Γ0(G), let h : H → R be a convex Gâteaux
differentiable function such that ∇h is β−1-Lipschitzian for some β ∈ ]0,+∞[, let M : H →
G be a bounded linear operator, and let e : H → Rp : x 7→ (ei(x))1≤i≤p be such that, for
every i ∈ {1, . . . , p}, ei is convex and Gâteaux differentiable in int dom ei, dom ei is closed,
∩p

i=1intdom ei ̸= ∅, and dom ∂f ⊂ ∩n
i=1intdom ei. The problem is to

min
e(x)∈]−∞,0]p

f(x) + g(Mx) + h(x), (6.1.8)

and we assume that solutions exist.
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By using Lagrangian duality, under qualification conditions, we can write Problem 6.1.4
as Problem 6.1.1. The following proposition is a consequence of Theorem 6.1.3.

Proposition 6.1.5. In the context of Problem 6.1.4, assume that 0 ∈ sri (dom g−M(dom f)),
let X = X1 ×X2 ×X3 ⊂ dom ∂f × dom ∂g∗ × [0,+∞[p be nonempty, closed, and convex,
let ε ∈ ]0, 1[, set ρ = min{2βε,

√
1− ε/∥M∥}, let σ ∈ ]0, 1[, let θ ∈

]
0,
√
1− ε− ∥M∥ρσ

[
.

For every z = (z1, z2, z3) ∈ H × G × Rp define Φz : γ 7→ (Φ1
z(γ),Φ

2
z(γ),Φ

3
z(γ)), where

Φ1
z : γ 7→ proxγf

(
z1 − γ

(
∇h(z1) +M∗z2 +

p∑
i=1

z3i∇ei(z
1)

))
Φ2

z : γ 7→ proxγg∗(z
2 + γMz1)

Φ3
z : γ 7→ P[0,+∞[p

(
z3 + γe(z1)

)
. (6.1.9)

Let z0 = (z10 , z
2
0 , z

3
0) ∈ H × G × Rp and consider the recurrence

(∀n ∈ N)



x1
n = Φ1

zn(γn)
x2
n = Φ2

zn(γn)
x3
n = Φ3

zn(γn)
z1n+1 = PX1

(
x1
n + γn(M

∗z2n +
∑p

i=1 z
3
n,i∇ei(z

1
n))− γn(M

∗x2
n +

∑p
i=1 x

3
n,i∇ei(x

1
n))
)

z2n+1 = PX2(x
2
n − γnMz1n + γnMx1

n)
z3n+1 = PX3(x

3
n − γne(z

1
n) + γne(x

1
n))

zn+1 = (z1n+1, z
2
n+1, z

3
n+1),

(6.1.10)
where, for every n ∈ N, γn is the largest γ ∈ {ρσ, ρσ2, ρσ3, . . . } satisfying

γ2

∥∥∥∥∥
p∑

i=1

z3n,i∇ei(z
1
n)− Φ3

zn,i(γ)∇e(Φ1
zn(γ))

∥∥∥∥∥
2

+
∥∥e(z1n)− e(Φ1

zn(γ))
∥∥2 ≤ θ2|||zn −Φzn(γ)|||2.

(6.1.11)
Moreover, assume that at least one of the following additional statements hold:

(i) lim inf
n→∞

γn = δ > 0.

(ii) For every i ∈ {1, . . . , p}, ∇ei is bounded and uniformly continuous in every weakly
compact subset of dom ∂f .

Then, (z1n)n∈N converges weakly to a solution to Problem 6.1.4.

Finally we implement our algorithm in a constrained total variation least-square prob-
lem and we compare its performance with available methods in the literature.
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6.2 Article: Four Operator Splitting via a Forward-

Backward-Half Forward AlgorithmWith Line Search1

Abstract In this article we provide a splitting method for solving monotone inclusions
in real Hilbert space involving four operators: a maximally monotone, a monotone-
Lipschitzian, a cocoercive, and a continuous operator. The proposed method takes advan-
tage of the intrinsic properties of each operator, generalizing the forward-back-half forward
splitting method and the Tseng’s algorithm with line-search. At each iteration, our algo-
rithm defines the step-size by using a line search in which the monotone-Lipschitzian and
the cocoercive operators need only one activation. We also derive a method for solving
non-linearly constrained composite convex optimization problems in real Hilbert spaces.
Finally, we implement our algorithm in a constrained total variation least-square problem
and we compare its performance with available methods in the literature.

6.2.1 Introduction

In this paper we aim at solving the following monotone inclusion problem.

Problem 6.2.1. Let X be a nonempty closed convex subset of a real Hilbert space H,
let A : H → 2H be a maximally monotone operator, let B1 : H → H be a β-cocoercive
operator, for some β > 0, let B2 : H → H be a monotone and L-Lipschitzian operator
for some L > 0, and let B3 : H → 2H be a maximally monotone operator such that B3 is
single valued and continuous in domA ∪ X ⊂ domB3. Moreover assume that A + B3 is
maximally monotone. The problem is to

find x ∈ X such that 0 ∈ Ax+B1x+B2x+B3x, (6.2.1)

under the assumption that the set of solutions to (6.2.1) is nonempty.

This inclusion encompasses several problems in partial differential equations coming
from mechanical models [24, 25, 26], differential inclusions [1, 36], game theory [11], among
other disciplines. Algorithms proposed in [4, 3, 5, 6, 7, 10, 13, 14, 16, 17, 18, 19, 20, 21,
22, 23, 27, 28, 30, 31, 32, 34, 39] can solve Problem 6.2.1 under additional assumptions or
without exploiting the intrinsic properties of the involved operators, in the case X = H.
Indeed, the algorithms in [5, 6, 7, 10, 16, 23] need to compute the resolvents of B1, B2, and
B3, which are not explicit in general or they can be numerically expensive. The schemes
proposed in [3, 17, 22, 27] take advantage of the properties of B2, but the cocoercivity of
B1 and the continuity of B3 are not leveraged. In fact, the algorithms in [3, 17, 22, 27] may

1Luis M. Briceño-Arias and Fernando Roldán. Four operator Splitting via a Forward-backward-half
forward algorithm with line search, 2022, https://arxiv.org/abs/actualizar.
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consider B3 as a maximally monotone operator and B1+B2 as a monotone and Lipschitzian
operator and activates it twice by iteration. In contrast, the algorithms in [14, 19, 30,
32, 34] activates B1 + B2 only once by iteration, but they need to store in the memory
the two past iterations and the step size is reduced significantly. Furthermore, methods
in [14, 19, 30] consider only one maximally monotone operator, hence, the resolvent of
A + B3 must be calculated; on the other hand, methods in [32, 34] need to calculate the
resolvent of B3. In addition, methods proposed in [4, 18, 20, 21, 28, 31, 39] take advantage
of the cocoercivity of B1, but they do not exploit the Lipschitzian property of B2 or the
continuity of B3 and need to compute the resolvents of B2 and B3. The method in [13]
exploits the properties of B1 and B2 but not considers B3 which must be treated as any
maximally monotone operator via it resolvent.

Other methods solving (6.2.1) including normal cones, when B3 = 0 and either B1 =
or B2 = 0, are discussed in [8, 9, 37].

Methods exploiting the continuity B3 are proposed in [12, 38]. In particular, the
algorithm in [38] solves Problem 6.2.1 when B1 = B2 = 0. The forward-backward-forward
splitting (FBF) method, proposed in [12], for solving numerically Problem 6.2.1 either
when B3 = 0 or when B2 = 0. In order to provide their respective convergence results, in
[12] and in [38], is assumed that X ⊂ domA.

In this paper, we propose a fully split method for solving Problem 6.2.1, which take
advantage of each of their intrinsic properties of the operators, overcoming the drawbacks
of the methods mentioned above. We generalize the proposed methods in [12, 38] allowing
X ̸⊂ A with additional hypothesis on B3.

Another contribution of this manuscript is to derive an algorithm for solving optimiza-
tion problems involving convex and Gâteaux differentiable functions, linear compositions
and Gâteaux differentiable nonlinear constraints. We study properties of these functions
for ensuring the convergence of this method. Finally, we provide numerical experiments
which illustrate the efficiency of our algorithm.

The paper is organized as follows. In Section 6.2.2 we set our notation. In Section 6.2.3
we provide some technical lemmas, our splitting method for solving Problem 6.2.1, and our
convergence result. In Section 6.2.4 we derive an algorithm for solving a constrained com-
posite optimization problem. Finally, in Section 6.2.5 we provide a numerical experiment
illustrating the efficiency of the proposed method in Section 6.2.4.

6.2.2 Preliminaries

Throughout this paper H and G are real Hilbert spaces. We denote the scalar product
by ⟨· | ·⟩ and the associated norm by ∥ · ∥. The symbols ⇀ and → denotes the weak
and strong convergence, respectively. Given a linear bounded operator M : H → G, we
denote its adjoint by M∗ : G → H. Id denotes the identity operator on H. Let D ⊂ H be
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non-empty, let T : D → H, and let β ∈ ]0,+∞[. The operator T is β-cocoercive if

(∀x ∈ D)(∀y ∈ D) ⟨x− y | Tx− Ty⟩ ≥ β∥Tx− Ty∥2 (6.2.2)

and it is β-Lipschitzian if

(∀x ∈ D)(∀y ∈ D) ∥Tx− Ty∥ ≤ β∥x− y∥. (6.2.3)

Let A : H → 2H be a set-valued operator. The domain, range, graph, and the zeros of
A are, respectively, dom A =

{
x ∈ H

∣∣ Ax ̸= ∅
}
, ran A =

{
u ∈ H

∣∣ (∃x ∈ H)u ∈ Ax
}
,

graA =
{
(x, u) ∈ H ×H

∣∣ u ∈ Ax
}
, and zerA =

{
x ∈ H

∣∣ 0 ∈ Ax
}
. The inverse of A is

A−1 : H → 2H : u 7→
{
x ∈ H

∣∣ u ∈ Ax
}
and the resolvent of A is JA = (Id + A)−1. The

operator A is monotone if

(∀(x, u) ∈ graA)(∀(y, v) ∈ graA) ⟨x− y | u− v⟩ ≥ 0. (6.2.4)

Moreover, A it is maximally monotone if it is monotone and there exists no monotone
operatorB : H → 2H such that graB properly contains graA, i.e., for every (x, u) ∈ H×H,

(x, u) ∈ graA ⇔ (∀(y, v) ∈ graA) ⟨x− y | u− v⟩ ≥ 0. (6.2.5)

A is locally bounded at x ∈ H, if there exists δ ∈ ]0,+∞[ such that A(B(x; δ)) is
bounded, and A is locally bounded in ∅ ̸= D ⊂ H if, for every x ∈ D, A is locally
bounded at x.

We denote by Γ0(H) the class of proper lower semicontinuous convex functions f : H →
]−∞,+∞]. Let f ∈ Γ0(H). The Fenchel conjugate of f is defined by f ∗ : u 7→ supx∈H(⟨x | u⟩−
f(x)), which is a function in Γ0(H). The subdifferential of f is the maximally monotone
operator

∂f : x 7→
{
u ∈ H

∣∣ (∀y ∈ H) f(x) + ⟨y − x | u⟩ ≤ f(y)
}
.

It turns out that (∂f)−1 = ∂f ∗ and that zer∂f is the set of minimizers of f , which is
denoted by argminx∈H f(x). We denote the proximity operator of f by

proxf : x 7→ argmin
y∈H

(
f(y) +

1

2
∥x− y∥2

)
. (6.2.6)

We have proxf = J∂f . Moreover, it follows from [2, Theorem 14.3] that

(∀γ > 0) proxγf + γproxf∗/γ ◦ Id/γ = Id. (6.2.7)

Given a non-empty closed convex set C ⊂ H, we denote by PC the projection onto C
and by ιC ∈ Γ0(H) the indicator function of C, which takes the value 0 in C and +∞
otherwise. For further properties of monotone operators, nonexpansive mappings, and
convex analysis, the reader is referred to [2].
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6.2.3 Main Result

We first study some properties of the monotone operators involved in Problem 6.2.1, which
ensure the finite termination of the backtracking procedure in our method.

Lemma 6.2.2. In the context of Problem 6.2.1, let z and y in H, and define

(∀γ > 0) xz,y(γ) = JγA(z − γy) and φz,y(γ) =
∥z − xz,y(γ)∥

γ
. (6.2.8)

Then, the following statements holds:

1. φz,y is nonincreasing.

2. (∀z ∈ domA) lim
γ↓0

φz,y(γ) = ∥(A+ y)0z∥ = min
w∈Az+y

∥w∥.

3. Set
C =

{
z ∈ H

∣∣ lim
γ↓0

φz,y(γ) < +∞
}
. (6.2.9)

Then, domA ⊂ C ⊂ domA.

4. Suppose that one of the following holds:

(a) z ∈ C.
(b) z ∈ domB3 \ C, y = (B1 +B2 +B3)z, and B3 is locally bounded at PdomAz.

(c) z ∈ domB3 \ C, y = (B1 +B2 +B3)z, and domA ⊂ int domB3.

Then, for every θ ∈ ]0, 1[, there exists γ(z) > 0 such that, for every γ ∈ ]0, γ(z)],

γ∥B3z −B3xz,y(γ)∥ ≤ θ∥z − xz,y(γ)∥. (6.2.10)

Proof. Let z ∈ H. Note that, if z ∈ zer(A+ y),

(∀γ > 0) 0 ∈ Az + y ⇔ z − γy ∈ γAz + z

⇔ z = xz,y(γ)

⇔ φz,y(γ) = 0. (6.2.11)

In this case, 1, 2, and 4 are clear. Henceforth, assume z ∈ H \ zer(A+ y). It follows from
(6.2.8) that

z − xz,y(γ)

γ
− y ∈ Axz,y(γ). (6.2.12)
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1: For every γ1 and γ2 in ]0,+∞[, (6.2.12) and the monotonicity of A yield

0 ≤
〈
z − xz,y(γ1)

γ1
− z − xz,y(γ2)

γ2

∣∣∣∣ xz,y(γ1)− xz,y(γ2)

〉
=

〈
z − xz,y(γ1)

γ1
− z − xz,y(γ2)

γ2

∣∣∣∣ xz,y(γ1)− z − (xz,y(γ2)− z)

〉
= − 1

γ1
∥z − xz,y(γ1)∥2 +

(
1

γ1
+

1

γ2

)
⟨z − xz,y(γ1) | z − xz,y(γ2)⟩ −

1

γ2
∥z − xz,y(γ2)∥2.

Hence, we obtain

γ1φz,y(γ1)
2 + γ2φz,y(γ2)

2 ≤ (γ1 + γ2)

〈
z − xz,y(γ1)

γ1

∣∣∣∣ z − xz,y(γ2)

γ2

〉
≤ (γ1 + γ2)

2
(φz,y(γ1)

2 + φz,y(γ2)
2),

which yields (γ1 − γ2)(φz,y(γ1)
2 − φz,y(γ2)

2) ≤ 0 and 1 follows.
2: It follows from the monotonicity of A and (6.2.12) that, for every w ∈ Az + y and

γ ∈ ]0,+∞[,

0 ≤
〈
z − xz,y(γ)

γ
− w

∣∣∣∣ xz,y(γ)− z

〉
,

which yields

1

γ
∥z − xz,y(γ)∥2 ≤ ⟨w | z − xz,y(γ)⟩

≤ ∥w∥∥z − xz,y(γ)∥. (6.2.13)

Thus, φz,y(γ) ≤ ∥w∥. Therefore, since [2, Proposition 20.36] implies that, for every
z ∈ domA, Az + y is nonempty, closed, and convex, [2, Theorem 11.10] yields

(∀γ ∈ ]0,+∞[) φz,y(γ) ≤ min
w∈Az+y

∥w∥. (6.2.14)

Hence, since φz,y ≥ 0, 1 implies that limγ↓0 φz,y(γ) exists. In turn, since z ∈ H\zer(A+y),
it follows from (6.2.14) and (6.2.11) that

0 < φz,y(1) ≤ lim
γ↓0

φz,y(γ) ≤ min
w∈Az+y

∥w∥, (6.2.15)

which, in view of (6.2.2), implies

lim
γ↓0

xz,y(γ) = z. (6.2.16)
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Since (φz,y(γ))(γ>0) is bounded, by [2, Lemma 2.45], there exists a sequence (γk)k∈N ⊂
]0,+∞[ and w ∈ H such that γk ↓ 0 and z−xz,y(γk)

γk
⇀ w as k → +∞. Therefore, (6.2.12),

(6.2.16), and [2, Proposition 20.38(i)] imply w ∈ Az + y. Hence, noting that

(φz,y(γk))
2 =

∥∥∥∥z − xz,y(γk)

γk
− w

∥∥∥∥2 + ∥w∥2 + 2

〈
z − xz,y(γk)

γk
− w

∣∣∣∣ w〉
≥ ∥w∥2 + 2

〈
z − xz,y(γk)

γk
− w

∣∣∣∣ w〉, (6.2.17)

we deduce
lim
γ↓0

(φz,y(γk))
2 = lim

k→+∞
(φz,y(γk))

2 ≥ ∥w∥2 ≥ min
w∈Az+y

∥w∥2.

Therefore, we obtain from (6.2.15) that

lim
γ↓0

φz,y(γ) = min
w∈Az+y

∥w∥, (6.2.18)

and 2 follows.
3: It follows from (6.2.9) and 2 that domA ⊂ C . Let z ∈ H \ domA. The firmly

nonexpansiveness of JγA [2, Proposition 23.8(ii)] implies

∥xz,y(γ)− PdomAz∥ = ∥JγA(z − γy)− JγAz + JγAz − PdomAz∥
≤ ∥JγA(z − γy)− JγAz∥+ ∥JγAz − PdomAz∥
≤ γ∥y∥+ ∥JγAz − PdomAz∥. (6.2.19)

Hence, by taking γ ↓ 0 in (6.2.19) we conclude from [2, Theorem 23.48] that xz,y(γ) →
PdomAz as γ ↓ 0. Then, by the continuity of the norm and z /∈ domA, we deduce

lim
γ↓0

∥z − xz,y(γ)∥ = ∥z − PdomAz∥ > 0.

Therefore, φz,y(γ) = ∥z − xz,y(γ)∥/γ → +∞ as γ ↓ 0 and, hence, it follows from (6.2.9)
that z ∈ H \ C.

4a: If z ∈ C, it follows from 1 that

0 < φz,y(1) ≤ lim
γ↓0

φz,y(γ) < +∞. (6.2.20)

Therefore limγ↓0 xz,y = z and the continuity of B3 implies

lim
γ↓0

B3xz,y = B3z. (6.2.21)

The result follows from (6.2.20) and (6.2.21).
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4b: Set B = B1+B2+B3 and let p = PdomAz. Since B3 is locally bounded at p, there
exists δp ∈ ]0,+∞[ such that B3(B(p; δp)) is bounded. Now since y = Bz and

z − JγAz

γ
∈ AJγAz, (6.2.22)

(6.2.12), y = Bz, and the it follows from (6.2.12) and the monotonicity of A that

0 ≤
〈
z − xz,y(γ)

γ
−Bz − z − JγAz

γ

∣∣∣∣ xz,y(γ)− JγAz

〉
=− 1

γ
∥xz,y(γ)− JγAz∥2 + ⟨Bz | JγAz − xz,y(γ)⟩

≤ − 1

γ
∥xz,y(γ)− JγAz∥2 + ∥Bz∥∥JγAz − xz,y(γ)∥.

Hence, we obtain
∥xz,y(γ)− JγAz∥ ≤ γ∥Bz∥. (6.2.23)

Additionally, by [2, Theorem 23.48], there exists γ1 such that, for every γ < γ1, ∥JγAz −
p∥ ≤ δp/2. By defining

γ :=

{
γ1, if Bz = 0;

min{δp/(2∥Bz∥), γ1}, if Bz ̸= 0,
(6.2.24)

it follows from (6.2.23) that, for every γ < γ,

∥xz,y(γ)− p∥ ≤ ∥xz,y(γ)− JγAz∥+ ∥JγAz − p∥

≤ γ∥Bz∥+ δp
2

< δp,

which yields (xz,y(γ))0<γ≤γ ⊂ B(p, δp). Therefore, since z ∈ H \ C implies φz,γ(γ) → +∞
as γ ↓ 0 and (∥B3z −B3xz,y(γ)∥)0<γ≤γ is bounded, the result follows.

4c: Since p = PdomAz /∈ bdry domB3, B3 is locally bounded in p [2, Theorem 21.18],
and the result follows from 4b.

Remark 6.2.3. 1. In the case B2 = 0, by setting y = (B1+B3)z in Lemma 6.2.2(1)&(2),
we recover [12, Lemma 2.2(1)].

2. Realizing that [12, Lemma 2.2(2)] is valid for every z ∈ domA, it is a particular
case of Lemma 6.2.2(3)&(4a).

Now we state our main result.
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Theorem 6.2.4. In the context of Problem 6.2.1, suppose that one of the following holds:

1. X ⊂ domA.

2. domA ⊂ domB3 and B3 is locally bounded in domB3.

3. domA ⊂ int domB3.

Let ε ∈ ]0, 1[, set ρ = min{2βε,
√
1− ε/L}, let σ ∈ ]0, 1[, let θ ∈

]
0,
√
1− ε− Lρσ

[
, let

z0 ∈ domB3, and consider the sequence (zn)n∈N defined by the recurrence

(∀n ∈ N)
⌊

xn = JγnA(zn − γn(B1 +B2 +B3)zn)
zn+1 = PX(xn + γn(B2 +B3)zn − γn(B2 +B3)xn),

(6.2.25)

where, for every n ∈ N, γn is the largest γ ∈ {ρσ, ρσ2, ρσ3, · · · } satisfying

γ∥B3zn−B3JγA(zn−γ(B1+B2+B3)zn)∥ ≤ θ∥zn−JγA(zn−γ(B1+B2+B3)zn)∥. (6.2.26)

Moreover, assume that at least one of the following additional statements hold:

(i) lim inf
n→∞

γn = δ > 0.

(ii) B3 is uniformly continuous in any weakly compact subset of conv (domA ∪X).

Then, (zn)n∈N converges weakly to a solution to Problem 6.2.1.

Proof. Set B = B1 + B2 + B3 and fix n ∈ N. If zn ∈ C, where C is defined in (6.2.9),
then γn is well defined in view of Lemma 6.2.2(4a). In particular, if 1 holds, γn is well
defined in view of Lemma 6.2.2(3). Now suppose that zn ∈ H \ C. If n = 0, it is clear
that z0 ∈ domB3 \ C. Otherwise, since X ⊂ domB3, we have zn ∈ domB3 \ C. Now, if
we assume 2, then B3 is locally bounded in PdomAzn ∈ domA and γn is well defined from
Lemma 6.2.2(4b). Similarly, if we assume 3, γn is well defined from Lemma 6.2.2(4c).

Now, let z∗ ∈ zer(A + B) ∩ X. Note that, by the maximal monotonicity of A + B3,
the full domain of B1 and B2, and [2, Corollary 25.5(i)], it follows that A+ B2 + B3 and
A + B are maximally monotone. Then, since B2 + B3 is continuous and single valued
in dom (B2 + B3) = domB3 ⊃ domA ∪ X and B1 is β-cocoercive, it follows from [12,
Proposition 2.1(1)&(2)] that, for every n ∈ N, we have

∥zn+1 − z∗∥2 ≤∥zn − z∗∥2 − (1− ε)∥zn − xn∥2 + γ2
n∥(B2 +B3)zn − (B2 +B3)xn∥2

− γn
ε
(2βε− γn)∥B1zn −B1z

∗∥2. (6.2.27)

Note that the Lipschitz property of B2 and (6.2.26) yield

γ2
n∥(B2 +B3)zn − (B2 +B3)xn∥2 ≤ (Lγn∥zn − xn∥+ γn∥B3zn −B3xn∥)2

≤ (Lγn + θ)2∥zn − xn∥2

≤ (Lρσ + θ)2∥zn − xn∥2. (6.2.28)
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Hence, it follows from (6.2.27) and (6.2.28) that

(∀n ∈ N) ∥zn+1 − z∗∥2 ≤∥zn − z∗∥2 − ((1− ε)− (Lρσ + θ)2)∥zn − xn∥2

− γn
ε
(2βε− γn)∥B1zn −B1z

∗∥2.

Therefore, since (1− ε− (Lρσ + θ)2) ≥ 2βε(1− σ) > 0 and (2βε− γn) > 0, [15, Lemma
3.1(i)] implies that (∥zn − z∗∥)n∈N is a convergent sequence and

zn − xn → 0. (6.2.29)

Let z ∈ H be a weak limit point of the subsequence (zn)n∈K for some K ⊂ N. Then z is
also a weak limit point of (xn)n∈K in view of (6.2.29). Since X is closed and convex, and
(zn)n∈K is a sequence in X we conclude that z ∈ X. Let us prove that z ∈ zer(A+B).

(i): Assume that lim infn→+∞ γn = δ > 0. Then, there exists n0 ∈ N such that
infn≥n0 γn ≥ δ. Hence, (6.2.26), (6.2.25), the Lipschitz continuity of B2, and the cocoer-
civity of B1 yield

(∀n ≥ n0) ∥Bzn −Bxn∥ ≤ ∥B1zn −B1xn∥+ ∥B2zn −B2xn∥+ ∥B3zn −B3xn∥

≤
(
1

β
+ L+

θ

δ

)
∥zn − xn∥, (6.2.30)

which implies Bzn −Bxn → 0 in view of (6.2.29). Hence, it follows from (6.2.25) that

(∀n ∈ N) un :=
zn − xn

γn
−Bzn +Bxn ∈ (A+B)xn, (6.2.31)

and (6.2.29) and lim infn→+∞ γn = δ > 0 imply that un → 0. Therefore, since xn ⇀ z,
n ∈ K, the weak-strong closure of the graph of the maximally monotone operator A+ B
and (6.2.31) yield z ∈ zer(A+B). The convergence follows from [2, Lemma 2.47].

(ii): Without loss of generality, suppose that limn→∞,n∈K γn = 0. Our choice of γn
guarantee that, for every n ∈ K, we have

γ̃n∥B3zn −B3Jγ̃nA(zn − γ̃nBzn)∥ > θ∥zn − Jγ̃nA(zn − γ̃nBzn)∥. (6.2.32)

where γ̃n := γn
σ

> γn. Now, by the nonincreasing property of γ 7→ 1
γ
∥z − JγA(z − γBz)∥

provided by Lemma 6.2.2(1) with to y = Bz, we have

1

γ̃n
∥zn − Jγ̃nA(zn − γ̃nBzn)∥ ≤ 1

γn
∥zn − JγnA(zn − γnBzn)∥, (6.2.33)

which is equivalent to

∥zn − Jγ̃nA(zn − γ̃nBzn)∥ ≤ 1

σ
∥zn − xn∥. (6.2.34)
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Then zn − xn → 0 implies that zn − Jγ̃nA(zn − γ̃nBzn) → 0 as n → ∞, n ∈ K. Therefore,
since zn ⇀ z, n ∈ K, the sequence (x̃n)n∈K defined by

(∀n ∈ K) x̃n = Jγ̃nA(zn − γ̃nBzn) (6.2.35)

satisfies x̃n ⇀ z as n → ∞, n ∈ K. Furthermore, (6.2.35) yields

zn − x̃n

γ̃n
+Bx̃n −Bzn ∈ (A+B)x̃n. (6.2.36)

Since {z}∪
⋃

n∈K [x̃n, zn] is a weakly compact subset of conv (domA∪X) [35, Lemma 3.2],
it follows from the uniform continuity of B3 that

B3zn −B3x̃n → 0 as n → ∞, n ∈ K. (6.2.37)

Hence, by (6.2.32), we obtain zn−x̃n

γ̃n
→ 0 as n → ∞, n ∈ K. Since B1 + B2 is Lipschitz

continuous, (6.2.37) implies that

Bx̃n −Bzn → 0 as n → ∞, n ∈ K. (6.2.38)

Altogether, the convergence follows, as in the case (i), from (6.2.36), the weak-strong
closure of the graph of the maximally monotone operator A+B, and [2, Lemma 2.47].

Remark 6.2.5. 1. In Theorem 6.2.4, if B3 = 0, we have domB3 = H and, for all
n ∈ N, γn = σρ = σmin{2βε,

√
1− ε/L}. Since, in this case (γn)n∈N is constant,

the largest step-size is obtained by taking ε = ε(L, β) = 2/(1+
√

1 + 16β2L2), which
satisfies 2βε =

√
1− ε/L = χ(L, β), where

χ(L, β) =
4β

1 +
√

1 + 16β2L2
, (6.2.39)

and γn ≡ γ = σχ(L, β) ∈ ]0, χ(L, β)[. Hence, we recover the result in [12, Theo-
rem 2.3(1)] for constant step-sizes. Additionally, if B2 = 0 and X = H, we have
ε(L, β) → 1 and χ(L, β) → 2β as L → 0 and γn ≡ 2βσ ∈ ]0, 2β[, recovering
the the forward backward algorithm [29]. On the other hand, if B1 = 0, we have
χ(L, β) → 1/L as β → ∞ and γn ≡ σ/L ∈ ]0, 1/L[, recovering the result in [38] for
constant step-sizes.

2. Suppose that B2 = 0 and X ⊂ domA. Then by taking L → 0, we have ρ → 2βε and
θ ∈

]
0,
√
1− ε

[
. Hence, Theorem 6.2.4 recovers [12, Theorem 2.3(2)] noting that

the uniform continuity in weakly compact subsets of conv (domA ∪ X) = domA is
needed. We hence generalize [12, Theorem 2.3(1)&(2)] to the case when X ̸⊂ domA.
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6.2.4 Application to Convex Optimization with Nonlinear Con-
straints

In this section we consider the following optimization problem.

Problem 6.2.6. Let f ∈ Γ0(H), let g ∈ Γ0(G), let h : H → R be a convex Gâteaux
differentiable function such that ∇h is β−1-Lipschitzian for some β ∈ ]0,+∞[, let M : H →
G be a bounded linear operator, and let e : H → ]−∞,+∞]p : x 7→ (ei(x))1≤i≤p be such
that, for every i ∈ {1, . . . , p}, ei is convex and Gâteaux differentiable in int dom ei, dom ei
is closed, ∩p

i=1intdom ei ̸= ∅, and dom ∂f ⊂ ∩n
i=1intdom ei. The problem is to

min
e(x)∈]−∞,0]p

f(x) + g(Mx) + h(x), (6.2.40)

and we assume that solutions exist.

The Lagrangian associated to (6.2.40) is

L : H×Rp : (x, v) → ]−∞,+∞] 7→ f(x) + g(Mx) + h(x) + e(x) · v− ι[0,+∞[p(v). (6.2.41)

In view of [2, Corollary 19.30], if (x̂, v̂) ∈ H×Rp is a saddle point of (6.2.41), x̂ is a solution
to (6.2.40) and by [2, Corollary 19.30(v), Theorem 16.3, Theorem 16.47, Example 16.13,
& Example 6.42(i)] we deduce that{

0 ∈ ∂(f + g ◦M + h)(x̂) +
∑p

i=1 v̂i∇ei(x̂)

0 ∈ N[0,+∞[p(v̂)− e(x̂).
(6.2.42)

Under standard qualification conditions, as 0 ∈ sri (dom g−M(dom f)), there exists û ∈ G
such that (6.2.42) reduces to

0 ∈ ∂f(x̂) +M∗û+∇h(x̂) +
∑p

i=1 v̂i∇ei(x̂)

0 ∈ ∂g∗(û)−Mx̂

0 ∈ N[0,+∞[p(v̂)− e(x̂),

which is equivalent to0
0
0

 ∈

 ∂f(x̂)
∂g∗(û)

N[0,+∞[p(v̂)

+

∇h(x̂)
0
0

+

M∗û
−Mx̂
0

+

∑p
i=1 v̂i∇ei(x̂)

0
−e(x̂)

 . (6.2.43)

Proposition 6.2.7. In the context of Problem 6.2.6 let X = X1 ×X2 ×X3 ⊂ dom ∂f ×
dom ∂g∗ × [0,+∞[p be nonempty, closed, and convex, and define the operator

B3 : H× G × R → 2H×G×R

(x, u, v) 7→

{
{(
∑p

i=1 vi∇ei(x), 0,−e(x))} , if v ∈ [0,+∞[p and x ∈
⋂p

i=1 intdom ei,

∅, otherwise.

(6.2.44)

Then, the following hold:
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1. B3 is maximally monotone.

2. Suppose that one of the following holds:

(a) (∇ei)1≤i≤p are bounded and uniformly continuous in every weakly compact sub-
set of dom ∂f .

(b) H is finite dimensional and (∇ei)1≤i≤p are continuous in every compact subset
of dom ∂f .

Then, B3 is uniformly continuous in every compact subset of dom ∂f × dom ∂g∗ ×
[0,+∞[p.

Proof. 1: Consider the saddle-function

ℓ : H× G × Rp → [−∞,+∞]

(x, u, v) 7→


e(x) · v, if v ∈ [0,+∞[p and x ∈

⋂p
i=1 dom ei;

+∞, if v ∈ [0,+∞[p and x /∈
⋂p

i=1 dom ei;

−∞, if v /∈ [0,+∞[p .

Note that, if v ∈ [0,+∞[p,

ℓ : (x, u, v) 7→

{
e(x) · v, if x ∈

⋂p
i=1 dom ei;

+∞, otherwise
(6.2.45)

and, if v /∈ [0,+∞[p, ℓ(·, ·, v) ≡ −∞. Hence, for every v ∈ Rp, ℓ(·, ·, v) is lower-
semicontinuous. Additionally, if x ∈

⋂p
i=1 dom ei, we have

−ℓ : (x, u, v) 7→

{
−e(x) · v, if v ∈ [0,+∞[p ;

+∞, otherwise
(6.2.46)

and, if x /∈
⋂p

i=1 dom ei

−ℓ : (x, u, v) 7→

{
−∞ if v ∈ [0,+∞[p ;

+∞, otherwise.
(6.2.47)

Therefore, for every (x, u) ∈ H × G, −ℓ(x, u, ·) is lower-semicontinuous. Furthermore,

(∀(x, u) ∈ H × G)(∀v ∈ Rp) B3(x, u, v) = ∂ℓ(·, ·, v)(x, u)× ∂(−ℓ(x, u, ·))(v). (6.2.48)

The result follows from [33, Corollary 1].
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2: First, assume 2a. Let Y = Y1 × Y2 × Y3 ⊂ dom ∂f × dom ∂g∗ × [0,+∞[p be a
weakly compact set. Let x = (x1, u1, v1) and y = (x2, u2, v2) in Y , fix i ∈ {1 . . . , p},
define ρi(t) : [0, 1] → R : t 7→ ei(x1 + t(x2 − x1)) which is differentiable in ]0, 1[. Since Y1

is weakly compact, by [2, Theorem 3.37], convY1 is also weakly compact. Moreover, we
deduce from the boundedness of ∇ei in convY1 ⊂ dom ∂f that exists Ki > 0 such that
supx∈convY1

∥∇ei(x)∥ ≤ Ki. Therefore, since ρ′i : t 7→ ⟨∇ei(x1 + t(x2 − x1)) | x2 − x1⟩, we
obtain

|ei(x2)− ei(x1)| = |ρi(1)− ρi(0)|

=

∣∣∣∣∫ 1

0

ρ′i(t)dt

∣∣∣∣
=

∣∣∣∣∫ 1

0

⟨∇ei(x1 + t(x2 − x1)) | x2 − x1⟩dt
∣∣∣∣

≤
∫ 1

0

∥∇ei(x1 + t(x2 − x1))∥∥x2 − x1∥dt

≤ Ki∥x2 − x1∥.

Thus, we conclude |ei(x1)− ei(x2)| ≤ Ki∥x2 − x1∥ and therefore

∥e(x2)− e(x1)∥ ≤ K∥x2 − x1∥ (6.2.49)

where K =
√∑p

i=1K
2
i . Since Y is weakly compact, it is bounded [2, Lemma 2.36] and

there exists V > 0 such that supv∈Y3
∥v∥ ≤ V for. Let ε > 0. The uniform continuity of

(∇ei)1≤i≤p implies the existence of δ > 0 such that

(∀i ∈ {1, . . . , p})(∀(z1, z2) ∈ Y 2
2 ) ∥z1 − z2∥ < δ ⇒ ∥∇ei(z1)−∇ei(z2)∥2 ≤

ε2

4pV 2
.

(6.2.50)
Now suppose that

∥x− y∥2 ≤ min

{
ε2

4pK2
, δ2
}
.
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Then, (6.2.49), the convexity of ∥ · ∥2, and (6.2.50) imply

∥B3x−B3y∥2 =

∥∥∥∥∥
p∑

i=1

v1,i∇ei(x1)− v2,i∇ei(x2)

∥∥∥∥∥
2

+ ∥e(x1)− e(x2)∥2

≤ 2

∥∥∥∥∥
p∑

i=1

(v1,i − v2,i)∇ei(x1)

∥∥∥∥∥
2

+ 2

∥∥∥∥∥
p∑

i=1

v2,i(∇ei(x1)−∇ei(x2))

∥∥∥∥∥
2

+K2∥x1 − x2∥2

≤ 2p

p∑
i=1

|v1,i − v2,i|2 ∥∇ei(x1)∥2 + 2p

p∑
i=1

|v2,i|2 ∥∇ei(x1)−∇ei(x2)∥2 +K2∥x1 − x2∥2

≤ 2pK2 ∥v1 − v2∥2 + 2pV 2

p∑
i=1

∥∇ei(x1)−∇ei(x2)∥2 +K2∥x1 − x2∥2

≤ 2pK2 ∥x− y∥2 + ε2

2
≤ ε2.

Therefore B3 is uniformly continuous in Y .
Now, assume 2b. Since H is finite dimensional the weak and strong topologies coincide

[2, Fact 2.33]. Hence, since ∇ei is continuous, it is bounded and uniformly continuous in
every compact subset of X. The result follows from 2a.

Remark 6.2.8. Note that if, for every i ∈ {1, . . . , p}, ∇ei is bounded and uniformly
continuous in every weakly compact subset of dom f , by Proposition 6.2.7, and dom ∂f ⊂
dom f , B3 is uniformly continuous in every compact subset of dom ∂f×dom ∂g∗×[0,+∞[p.

Proposition 6.2.9. In the context of Problem 6.2.6, assume that 0 ∈ sri (dom g−M(dom f)),
let X = X1 ×X2 ×X3 ⊂ dom ∂f × dom ∂g∗ × [0,+∞[p be nonempty, closed, and convex,
let ε ∈ ]0, 1[, set ρ = min{2βε,

√
1− ε/∥M∥}, let σ ∈ ]0, 1[, let θ ∈

]
0,
√
1− ε− ∥M∥ρσ

[
.

For every z = (z1, z2, z3) ∈ H × G × Rp define Φz : γ 7→ (Φ1
z(γ),Φ

2
z(γ),Φ

3
z(γ)), where

Φ1
z : γ 7→ proxγf

(
z1 − γ

(
∇h(z1) +M∗z2 +

p∑
i=1

z3i∇ei(z
1)

))
Φ2

z : γ 7→ proxγg∗(z
2 + γMz1)

Φ3
z : γ 7→ P[0,+∞[p

(
z3 + γe(z1)

)
. (6.2.51)
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Let z0 = (z10 , z
2
0 , z

3
0) ∈ H × G × Rp and consider the recurrence

(∀n ∈ N)



x1
n = Φ1

zn(γn)
x2
n = Φ2

zn(γn)
x3
n = Φ3

zn(γn)
z1n+1 = PX1

(
x1
n + γn(M

∗z2n +
∑p

i=1 z
3
n,i∇ei(z

1
n))− γn(M

∗x2
n +

∑p
i=1 x

3
n,i∇ei(x

1
n))
)

z2n+1 = PX2(x
2
n − γnMz1n + γnMx1

n)
z3n+1 = PX3(x

3
n − γne(z

1
n) + γne(x

1
n))

zn+1 = (z1n+1, z
2
n+1, z

3
n+1),

(6.2.52)
where, for every n ∈ N, γn is the largest γ ∈ {ρσ, ρσ2, ρσ3, . . . } satisfying

γ2

∥∥∥∥∥
p∑

i=1

z3n,i∇ei(z
1
n)− Φ3

zn,i(γ)∇e(Φ1
zn(γ))

∥∥∥∥∥
2

+
∥∥e(z1n)− e(Φ1

zn(γ))
∥∥2 ≤ θ2|||zn −Φzn(γ)|||2.

(6.2.53)
Moreover, assume that at least one of the following additional statements hold:

(i) lim inf
n→∞

γn = δ > 0.

(ii) For every i ∈ {1, . . . , p}, ∇ei is bounded and uniformly continuous in every weakly
compact subset of dom ∂f .

Then, (z1n)n∈N converges weakly to a solution to Problem 6.2.6.

Proof. Let H = H× G × Rp, define
A : H → 2H : (x, u, v) 7→ ∂f(x)× ∂g∗(u)×N[0,+∞[p(v),

B1 : H → H : (x, u, v) 7→ (∇h(x), 0, 0),

B2 : H → H : (x, u, v) 7→ (M∗u,−Mx, 0),

(6.2.54)

and consider the operator B3 defined in (6.2.44). Note that A is maximally monotone [2,
Proposition 20.23 & Proposition 20.25], B1 is β−cocoercive [2, Corollary 18.17], B2 is ∥M∥-
Lipschitzian [10, Proposition 2.7(ii)] & [2, Fact 2.20], and the operator B3 is maximally
monotone by Proposition 6.2.7. Furthermore, note that domA = dom (∂f)×dom (∂g∗)×
[0,+∞[p and domB3 = (∩n

i=1intdom ei)×G×[0,+∞[p. Hence, since dom (∂f) ⊂ ∩n
i=1intdom ei,

we have domA∪X ⊂ domB3 and 0 ∈ int (domA− domB3) and therefore A+B3 is max-
imally monotone [2, Corollary 25.5(ii)]. Therefore, the inclusion in (6.2.43) is a particular
instance of Problem 6.2.1. Define, for every n ∈ N, xn = (x1

n, x
2
n, x

3
n). Hence, (6.2.51),

(6.2.44), and (6.2.54) yield

(∀n ∈ N)
⌊

xn = JγnA(zn − γn(B1 +B2 +B3)zn)
zn+1 = PX(xn + γn(B2 +B3)zn − γn(B2 +B3)xn),

(6.2.55)
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where γn, by (6.2.53) and (6.2.54), satisfies

γ∥B3zn−B3JγA(zn−γ(B1+B2+B3)zn)∥ ≤ θ∥zn−JγA(zn−γ(B1+B2+B3)zn)∥. (6.2.56)

Note that, if we assume (ii), by Proposition 6.2.7, B3 is uniformly continuous in every weak
compact subset of dom ∂f × dom ∂g∗ × [0,+∞[p = conv (domA) = conv (domA ∪X) [2,
Corollary 21.14 & Exercise 3.2]. Altogether, assuming (i) or (ii), since X ⊂ domA, by
Theorem 6.2.4, there exists z = (z, u, v) ∈ H × G × Rp solution to (6.2.43) such that
zn ⇀ z. Since 0 ∈ sri (dom g−M(dom f)), by (6.2.42), (6.2.43), and [2, Theorem 16.47] z
is a saddle-point of L in (6.2.41). By [2, Corollary 19.30(v)], z is a solution to Problem 6.2.6
and the result follows.

6.2.5 Numerical Experiments

In this section we consider the following optimization problem

min
y0≤x≤y1

xi(ln(xi/ai)−1)−ri≤0,
i∈{1,...,n}

α∥Mx∥1 +
1

2
∥Ax− z∥2, (6.2.57)

where M ∈ Rr×n, A ∈ Rm×n, z ∈ Rm, y0 = (η0i )1≤i≤n ∈ Rn, y1 = (η1i )1≤i≤N ∈ RN ,
r1, . . . , rn ∈ ]−1,+∞[, and a1, . . . , an ∈ ]0,+∞[. Set

C = ×n
i=1[η

0
i , η

1
i ],

f = ιC ,

g = α∥ · ∥1,
h = ∥A · −z∥2/2,
e = (ei(·))ni=1,

(6.2.58)

where

(∀i = 1, . . . , n) ei : Rn → ]−∞,+∞] : x 7→


xi(ln(xi/ai)− 1)− ri, if xi > 0;

−ri, if xi = 0;

+∞, otherwise.

Then, we have f ∈ Γ0(Rn), g ∈ Γ0(Rr), and ∇h is ∥A∥2-Lipschitzian. Additionally, for
every i ∈ {1, . . . , n}, ei is Gâteaux differentiable in ]0,+∞[n,

(∇ei(x))k =

{
lnxk, if k = i,

0, otherwise,
(6.2.59)
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dom ei is closed, ∩n
i=1dom ei = [0,+∞[n, and 0 ∈ int (dom (∂f)− ∩n

i=1dom ei) = ×N
i=1 ]−∞, η1i [.

Hence, the optimization problem in (5.2.38) is a particular instance of Problem 6.2.6. In
this setting, since g∗ = ι[−α,α]r [2, Example 13.32(v) & Proposition 13.23(i)], we consider
X1 × X2 × X3 = C × [−α, α]r × [0,+∞[p in order to write the recurrence in (6.2.52) as
Algorithm 6 below.

Algorithm 6

1: Fix z0 = (z10 , z
2
0 , z

3
0) ∈ Rn ×Rr ×Rn. Let σ ∈ ]0, 1[, let ε = ∥A∥4

√
1+16∥M∥2/∥A∥4−1

8∥M∥2 , let

θ = 2ε∥M∥(1− σ)/∥A∥2, and let ϵ > 0.
2: while rn > ϵ do
3: γ = 2ε∥M∥
4: V = 0
5: while V = 0 do
6: γ → γ · σ
7: Φ1(γ) = P[η1,η2]n

(
z1n − γ

(
A∗(Az1n − z) +M∗z2n +

∑p
i=1 z

3
n,i ln(z

1
n,i)
))

8: Φ2(γ) = γ(Id− proxα∥·∥1/γ)(z
2
n/γ +Mz1n)

9: Φ3(γ) = P[0,+∞[n
(
z3n + γe(z1n)

)
10: Φ(γ) = (Φ1(γ),Φ2(γ),Φ3(γ))
11: if

∑p
i=1 |z3n,i ln(z1n,i)−Φ3

i (γ) ln(Φ
1
i (γ))|2+ ∥e(z1n)− e(Φ1(γ))∥2 ≤ θ2

γ2 |||zn −Φ(γ)|||2
then

12: V = 1
13: end if
14: end while
15: γn = γ
16: (x1

n, x
2
n, x

3
n) = (Φ1(γn),Φ

2(γn),Φ
3(γn))

17: z1n+1 = P[η1,η2]N
(
x1
n+γn(M

∗z2n+
∑p

i=1 z
3
n,i ln(z

1
n,i))−γn(M

∗x2
n+
∑p

i=1 x
3
n,i ln(x

1
n,i))

)
18: z2n+1 = P[−α,α]r(x

2
n − γnMz1n + γnMx1

n)
19: z3n+1 = P[0,+∞[p(x

3
n − γne(z

1
n) + γne(x

1
n))

20: zn+1 = (z1n+1, z
2
n+1, z

3
n+1)

21: rn = R
(
zn+1, zn

)
22: n → n+ 1
23: end while
24: return zn+1

We compare Algorithm 6 with the algorithm propose in [12] called FBHF and with
the MATLAB’s fmincon (interior point).

To solve problem in (6.2.40) with FBHF algorithm, we consider X = X1 × X2 × X3

and the followings operators (see (6.2.43) and [12, Theorem 2.3])
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Table 6.1: Average time and average number of iterations of 20 random realizations of
problem in (5.2.38) for Algorithm 6, FBHF, and fmincon.

ϵ = 10−6 N2 = N1/3 N2 = N1/2 N2 = 2N1/3
N1 Algorithm Av. Time (s) Av. Iter Av. Time (s) Av. Iter A. Time (s) A. Iter

600
Alg. 6 6.82 7845 9.61 10384 15.79 16136
FBHF 10.47 8280 14.22 10885 23.28 16772
fmincon 52.52 238 66.25 276 69.78 251

900
Alg. 6 19.26 8185 28.89 11932 52.69 20653
FBHF 31.28 8568 46.06 12375 84.17 21757
fmincon 256.71 350 309.33 408 292.21 368

1200
Alg. 6 36.01 8809 62.82 14490 110.76 24778
FBHF 59.41 9231 98.60 14783 174.08 25633
fmincon 694.86 457 839.06 528 790.66 462

A =

 ∂f(x̂)
∂g∗(û)

N[0,+∞[p(v̂)

 , B1 =

∇h(x̂)
0
0

 , B2 +B3 =

M∗û+
∑p

i=1 v̂i∇ei(x̂)
−Mx̂
−e(x̂)

 .

(6.2.60)
In our numerical experiments, we generate 20 random realizations of A, M , z, and

r1, . . . , rn for dimensions n = m ∈ {600, 900, 1200} and r ∈ {n/3, n/2, 2n/3}. In each
realization we define ai = 9 for i ∈ {1, . . . , n}, α = 0.05, and y0 = ŷ0 and y1 = ŷ1+rand(n),
where ŷ1 and ŷ2 satisfies e(ŷ0) = e(ŷ1) = 0. For Algorithm 6 we consider σ = 0.99. For
FBHF we consider ε = 0.8, θ =

√
1− ε/2, σ = 0.99, the maximally monotone operator

A, the cocoercive operator B1, and the continuous operator B1 + B2 on (6.2.60) (see [12,
Theorem 2.3]).

In Table 6.1 we provide the average time and iterations to achieve a tolerance ϵ = 10−6

for the instances mentioned above. We can observe that, for each instance, Algorithm 6
is more efficient than the method FBHF and fmincon. Algorithm 6 and FBHF are sim-
ilar in number of iterations, but each iteration of FBHF is more expensive in time than
Algorithm 6. This is because FBHF needs, additionally, to activate the operators M∗ and
M in each line search. This difference is larger as the dimension of the problem increases.
Although fmincon needs less iterations than Algorithm 6 and FBHF to reach the stop
criterion, each iteration is very expensive in CPU time. Indeed, Algorithm 6 reaches the
stop criterion in 20% of the time that fmincon takes.
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Chapter 7

Perspectives

To conclude this thesis we present some future perspectives of work.

• A direct extension of this work is to provide an algorithm which solves Problem 1.1.9
by splitting all the operators. In Chapter 5 we provide a method for solving Prob-
lem 1.1.9, when B3 = 0, by using partial inverse techniques and FBHF (Algo-
rithm 1.1.13). In Chapter 6 we present the Forward-Backward Half Forward with
line search method (FBHFLS) to solve numerically Problem 1.1.9 when V = H,
generalizing FBHF. Hence, by a similar procedure, using partial inverse techniques
and FBHFLS algorithm proposed in Chapter 6, it is foreseeable that we can solve
Problem 1.1.9.

• We begin this thesis introducing Problem 1.1.1 and we split it in two cases solving
both separately. Then, Problem 1.1.1 is still a open question. By solving Prob-
lem 1.1.9 and proceeding similarly to Section 5.2.4, we expect to solve Problem 1.1.1.

• In Chapter 3 we derive the convergence of Krasnosel’skĭı-Mann (KM) iterations
defined in the range of monotone self-adjoint linear operators. To obtain the con-
vergence of the relaxed primal-dual algorithm with critical preconditioners we prove
that this method defines KM iterations in the range of a particular linear operator.
An open question is whether it is possible to apply and extend this result to other
methods, with critical step-sizes/preconditioners or to develop new algorithms.

• Several articles provide convergence rates for DRS (Algorithm 1.1.4) (see for instance
[2, 7]). In Chapter 2 we generalize DRS by providing the SDR algorithm, additionally
we show its relation with the PDS including critical step-sizes. In Chapter 2.2.5 we
present numerical simulations and we show instances when an adequate choice of
the step-sizes improves, regarding number of iterations and time, the convergence of
SDR. Hence, the computation of a convergence rate of SDR will allows us to deduce
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a relation between the speed of convergence and step-sizes. This is also a perspective
for all the methods proposed in this thesis.

• Inertial methods for monotone inclusions update each iteration by using the last
two iterates [1]. The inclusion of inertial steps to some methods can accelerate its
convergence. For instance, variations including inertial steps of methods as DRS,
Tseng’s type, ADMM, forward-backward, and forward-backward-forward are avail-
able in [1, 4, 5, 6, 3]. In view of that, an interesting future work is to include inertial
steps to the methods presented in this thesis.
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